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Abstract: In this paper there is performed a comparative study of the electrostatic field 
produced by a d.c. voltage applied to a system with 2 extremely long rectilinear 
conductors, with rectangular cross-section, placed in air. Firstly an experimental study 
is presented, using an electrokinetic model in an electrolytic tank. Afterward a 
numerical solution using FEM is presented, (the Kelvin’s transformation was used in 
order to truncate the field domain’s boundary). Because the experimental electrokinetic 
model is also using Kelvin’s transformation (geometrical inversion), the comparative 
study of both methods used to solve the field problem is authorized and makes possible 
the formulation of some conclusions with respect to the efficiency of both procedures.  
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1. EXPERIMENTAL STUDY OF THE 

ELECTROSTATIC FIELD 
 

1.1. Field problem formulation. Analogies 

1.1-a. Field problem formulation. In order to 
perform this study it was considered, as example for 
control, a system consisting of 2 parallel, rectilinear 
and extremely long conductors, placed in air. One 
performs an analysis of the conductors’ electrostatic 
field, when they are supplied by a d.c. voltage 

, though analogical (physical) modeling 
in a tank filled with an electrolytic solution. Finally 
one calculates the specific capacity of system. From 
now on we should use the specific term “original” to 
designate the electrostatic system and respectively 
the specific term “model” to designate the 
electrokinetic system from tank.  
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Problem type. For symmetry reasons, one consider a 
bidimensional problem for the analysis of electric 
fields with plan-parallel symmetry, reported to a 
system of cartesian coordinates (x,y) or to a  system 
of polar coordinates (r,θ). The analysis plane is 
perpendicular over the conductors.  
The real boundary of the field domain is unbounded 
because the field is extended toward infinite.  
The computation boundary is truncated applying 
Kelvin’s transformation. In this transformation a 
circle is used to enclose the region of interest of the 
conductors and a second circle is attached to the 
back of the first circle. 

 
1.1-b. Analogy between the electrostatic field and 
the steady electrokinetic field. The electrostatic field 
equations in homogeneous dielectric materials, in 
the absence of electric charges, and the equations of 
the steady electrokinetic field in homogeneous 
conductors are formally identical (Puscasu, 1990; 
Sora, 1980). As a consequence, one can determine 
analogies between the electric quantities, the 
material constants and the global parameters that 
characterizes both fields, according to table 1. The 
electrokinetic field quantities from the physical 
model are denoted by the index “m”. 
 

1.2. Kelvin’s transformation. Double layered 
electrolytic tank 

 
1.2-a. Kelvin’s transformation (Meeker, 2003; 
Freeman and Lowther, 1988; Ciric and Wong, 
1989). The electrostatic field of the conductors’ 
system is unbounded (its boundary is open). Because 
the physical model must have finite sizes, it is 
required to truncate the field domain boundary. For 
this aim one applies Kelvin’s spatial transformation. 
When this trans-formation is used, the field infinite 
domain is divided into 2 areas. The first area is finite 
and represents the field domain of interest, around 
sources, bounded by a circular boundary with the 
radius . 0r

 



Table 1: Analogies 

The electrostatic field 
( V,D,E ) 

The steady electrokinetic field 
( mmm V,J,E ) 

 
A. The equations of the fields 

 
  1. The first order  differential equations 

0Ecurl = , 0Ecurl m = , 
( VgradE −= ), ( mm VgradE −= ), 

0DdivEdiv == , 0JdivEdiv mm == , 
( ED ε= ). ( mmm EJ σ= ). 

2. The Laplace's equations 
0V =Δ , 0Vm =Δ , 

in cartesian  coordinates 
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3.The boundary conditions: 

 
a) the general case 

Dirichlet:     Df)P(V = , m,Dmm f)P(V = . 
Neumann:  
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b) the truncation of outer boundaries applying  Kelvin transformation 

 
Periodic: ),rR(V),rr(V 00 θ==θ= , ),rR(V),rr(V m,0mmm,00m θ==θ= . 
Point on 
boundary: 

Σ∈)r(P , mmm )r(P Σ∈ . 

 
B. Quantities and materials constants: 

 
electric field  strength   E  mE  electrokinetic field strength 

electrical displacement   D  mJ  electric current density 

electrostatic  potential   V  mV  electric steady potential 

electrical charge   q  
mI  electric current 

electrical charge density   ρ  
mJ  electric current density 

electrical permitivity   ε  mσ  electrical conductivity 

 
cartesian  coordinates of  a  point: 

( ). y,x ( ). m,m yx
polar  coordinates of  a  point: 

( ) θ,r ( ) mm ,r θ
physical integrals parameters: 

electrical capacitance   C Gm electrical conductance 

RND f,f,f,b,a  in the both fields  are fonctions of point on boundary 

 
 



The second region is infinite outside the circular 
finite boundary. The Kelvin transformation, defined 
through the geometric relation: 
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performs a transformation of the domain’s second 
infinite area ( ), into a circular finite area, 
with the radius , and having in its center 
( ) the counterpart of the point from infinite 
from the infinite field domain (

∞<≤ rr0

0rR =
0R =

∞→r ).  
Laplace equation in polar coordinates. In the first 
circular area around sources, the electric potential 
satisfies the known equation: 
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After derivations in (1) and substitutions in eq. (2), 
in the second circular area, the electric potential, 

satisfies the equation: ),,R(VV θ=
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Because the forms of equations (2) and (3) are 
identical, one can sustain that the second finite 
circular area without field sources models the 
infinite area from outside the circle with radius .  0r
The electric potential V, along the boundary with 
radius , satisfies both eq. (1) and eq. (2). 
Consequently, along the circular boundaries one 
must impose a periodic condition that forces the 
potential's continuity along the corresponding areas 
from both common boundaries.  

0rRr ==

In the second circular area it is required that the 
potential in the center should be zero, .0V 0R =

=
 

This value corresponds to the zero value of the 
potential at infinite, 0V r =

∞=
, in the original – 

untransformed – domain. Under these conditions, 
the field solution is unique. 
1.2-b. Double layer electrolytic tank. The 
electrolytic tank is represented by an isolated 
circular tank, filled with electrolyte (Puscasu, 1990). 
The radius of tank’s circular cross-section is , 
big enough with respect to its height so as to offer 
the plane-parallel field from model. According to 
Kelvin’s transformation, in the tank filled with a 
homogeneous electrolytic solution one gets 2 layers 
of isolated parallel conductors (the isolation can be 
performed for example by means of a glass sheet 
whose diameter is a little bit smaller than that of the 
tank). The circular boundaries of both electrolyte 
layers are connected near tank’s wall, so that the 
periodicity condition along the boundary is satisfied.  

m0r

The solution of conductive electrolyte from above 
the glass plate corresponds to the first circular area 
of the field around conductors, . The second 
electrolyte layer, , below the glass 

plate, performs a modeling of the second external, 
infinite area of the original field.  

m0m rr ≤

m0m rR0 ≤≤

The electric conductors are modeled within the tank 
through 2 copper electrodes considered as perfect 
conductors, through which the electric current is 
injected. To get a steady electrokinetic regime 
within the tank, the electrodes supplying should be 
made by a d.c. source. But the d.c. current should 
cause the electrolyte polarization. Therefore the 
supplying is performed from an a.c. source, at low 
frequency ( ). In this way one gets a 
regime close to the steady regime. 

Hz1000f =

1.2-c. The reproduction scales original to model. 
The realization of physical model, corresponding to 
the original system, is performed for a certain 
reproduction scale, so as to reproduce both the 
geometric sizes and respectively the supplying 
sources values. Consequently, one chooses, 
depending on the possibilities of practical 
realization, two reproducing scales: for lengths and 
respectively for electric voltages.  
The scale used for the reproduction of lengths is the 
constant ratio: (the original  system sizes)/ (the 
model system sizes). This is in cartesian coordinates: 
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The coordinates for a point from model can be easily 
determined, from eq. 4, if its coordinates from the 
original system are the reproduction scale for lengths 
are known.  
The scale used for the reproduction of sources is the 
constant ratio: (the values of voltage supplying 
sources from the original  system )/ (the values of 
voltage supplying sources from the model): 
 

 
ca,m

cc
v U

U
k = . (5) 

 

1.2.d. The determination of the electrical quantities 
from the original is easily performed using the 
reproduction scales and the values of electrical 
quantities from the model. 
To be more specific: 
- the potential corresponding to a point from the 
original system is determined with the relation 
        vmm k)P(V)P(V = ,                  (6) 
- the electric field strength in a point from the 
original system is determined with the approximate 
relation 
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where:  and  are potential’s values along 
two equipotential lines, that are closed enough to the 
calculation point from the model, , and  is 
the distance between both equipotential lines; 

1mV 2mV

mP 12,mlΔ

- the capacity of the original system, , 
corresponds to the conductance from the 
electrokinetic model, : 
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where  and  are the electrodes potentials, 
 is the current injected in an electrode that is 

afterward distributed within the electrolyte through 
the electrode’s lateral surface considered as perfectly 
conducting.  

1mV 2mV

1mI

 
1.3. Experimental schematic and results 

 
1.3-a. Experimental schematic. The electrolyte tank 
and the experimental schematic, depicted by fig. 1, 

were realized in the laboratory of Electrical 
Engineering and the experimental procedure is 
shown in (Puscasu, 1990). 
 
The elements from the experimental schematic are: 
Cv – the tank filled with electrolyte (H2O), in which 
there are symmetrically placed two identical 
conducting copper electrodes, C1 and C2; 
G – audio-frequency generator, of type H04-002; 
R1 and R2 – correlated resistances (R1+R2=const.); 
S– probe for the detection of equipotential points in 
the electrolyte around electrodes. 
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         Fig.1. Experimental schematic 
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1.3-b. Experimental procedure and results. To 
determine the quantities from model, one must start 
by drawing the equipotential lines from the 
electrokinetic field in the electrolyte. Afterwards the 
electric field strength is determined. 
The analogous quantities from the original system 
are determined with the eq. (7, 8 and 9).  
    Determination of equipotential lines. The points 
from an equipotential line are determined by means 
of a probe S for a certain ratio provided by  and 

. When the experimental bridge schematic is 
balanced (the signal recorded by scope is minimum), 
the coordinates of the point ( , ) are 
determined using two rectangular rules. One ruler is 
fixed to tank, and the second ruler, on which the 
probe S is placed, is mobile with respect to the first 
ruler, through a guidance system. 
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Five equipotential lines are drawn between both 
electrodes, corresponding to the following ratios of 
correlated resistances: 
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Then another four lines are drawn, using the 
symmetry. Therefore one can get the equipotential 
lines with the following potentials (expressed in 

percents, 10%, 20%,…, 90%, from the voltage 
applied on electrodes). 
    Drawing of electric field lines. The lines 
corresponding to the electric field strength E are 
orthogonal on the equipotential lines and can be 
drawn, with a good accuracy, mainly within the are 
between the electrodes, where the field is almost 
uniform. The lines from both field spectra forms 
curvilinear quadrilaters with almost equal sides, 
 

 mV,mE,m lll Δ=Δ=Δ . (10) 
 

For different values of the voltage U that supplies 
the original system, the electric field strength from 
the electrostatic system is calculated with the 
equation (8) that becomes 
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where %10)%VV(U 2m1m12,m =−=Δ  represents 
the percent from the voltage applied to the model’s 
electrodes corresponding to a pair of successive 
equipotential lines, and the reproduction scale for 
lengths is chosen as . 2kl =
Experimental results. One draws the equipotential 
lines spectrum (an example is depicted by fig. 2), 
and table 2 presents the data measured in the model 
and respectively those calculated through a 
graphical-analytic method for the original system. 

 
 
 
 



 
 

Fig.2. Equipotential lines in electrokinetic model

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. ELECTROSTATIC FIELD ANALYSIS USING 

FINITE ELEMENTS METHOD 
 

2.1. Formulation of field problem and selection of 
computation model 

 
The field problem, as specified from the beginning, 
is a bidimensional problem with plan-parallel 
symmetry and now is analyzed with the FEM 
method using the variational formulation (Silvester, 
1990; Pei-bai Zhou, 1993). The differential equation 
of the electrostatic potential (2), using polar 
coordinates, ( ) is substituted by an equivalent 
system of algebraically equations, obtained through 
the minimization of the energetic functional with the 
expression 
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where the potentials of the nodes from mesh is 
unknowns. The mesh consists of triangular elements, 

 and  are the surfaces corresponding to both 
circular areas, ρ  is the superficial density of the 
electric charge from the conductors, and V is the 
known potential of the conductors from system 
( ).  

1S 2S

1S
The field domain is represented by two circular 
surfaces with equal radius ( ), determined 
according to Kelvin’s transformation presented 
above.  

0r

The field domain boundary is represented by the 
circular curves  and  that bound the plane 
subdomains used for analysis. 

1Γ 2Γ

The conditions along the circular boundaries are 
periodic. Through the computer program one 
imposes the electric potential continuity along both 
circular boundaries, each of them consisting of two 
corresponding semicircles. In the second circular 
area’s center one imposed the condition of null 
potential. Under these circumstances, the field 
numerical solution is unique.  
 

2.2. Determination of field problem numeric 
solution 

 
The FEM solution of field problem is performed 
using FEMM program (Meeker, 2003). The field 
domain meshing is based on triangular linear 
elements. For a convenient mesh step, the field 
domainwas divided into 24708 elements with 12716 
nodes. A finite element model is shown in Fig.3. 
The determination of numerical solution and its 
processing. The computation program provides a 
solution whose error is at most 10-8. The solution 
processing, for the objectives of this paper, consists 
in the drawing of equipotential lines (Fig. 4) and the 
calculation of system’s specific capacity using the 
relation: 
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where for a known applied voltage, , one 
determines numerically the total electrical charge 

, distributed along the first conductor surface.
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Fig.3. Discretization of  field domain with triangular elements 
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Fig.4. Equipotential lines and electric field strength  lines distributions   

 
3. RESULTS 

 
3.1. Electric field strength 

 
To make the comparative study, for the beginning 
one represents 9 equipotential lines, as shown in the 
paragraph 1.3-b. Then one determines in a graphical-
analytical manner, the electric field strength in 9 
points, carefully selected along the mean field line, 
between both electrodes. These points correspond to 
the 9 equipotential lines from the electrokinetic 
field. 
The values from the experimental calculation, , 
considered with respect to the distances Δlm 
measured between the neighboring equipotential 
lines are presented by Table 2 along with the 
numerically calculated values, . Figure 5 depicts 
the electric field strength variation, numerically 
determined along the mean line between the 
conductors from the original electrostatic field. 
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3.2. Specific capacitance of the electric line 

 
Specific capacitance of the electric line will be 
determined, in a future paper, through physical 
modeling in the electrolytic tank and numerical 
calculation with the finite element method on the 
electrostatic and electrokinetic numerical models.  
 

4. CONCLUSIONS 
 
1. The experimental results are affected by errors 
caused by the realization of the analogue model, the 
measurements using the model, the boundary 
truncation and – most of all – the graphical-
analytical calculation. The overall error generated by 
them can significantly affect the accuracy 
corresponding to the determination of the local state 
quantities and of specific capacity. The errors 
generated by the graphical-analytical calculation can 



be reduced through the drawing of a large number of 
equipotential lines, but this should make the 
procedure almost unusable. 
2. Despite of all its disadvantages, the physical 
modeling of technical systems enables the obtaining 
of some calculation information useful in design. 
3. Today the numerical modeling with FEM takes 
the advantages of performing programs that provide 
solutions for many complex problems with a 
significant accuracy. 
4. The truncation of open borders with Kelvin’s 
transformation represents a good procedure that 

leads to the reducing of the required memory and of 
computation time, for an imposed accuracy with the 
order 10-8.  
5. A study on a field problem with infinite 
boundaries made through physical modeling and 
numerical calculations enables the obtaining of 
knowledge on making experiments and numerical 
simulations. It also provides abilities on the selection 
of methods of analysis that require small costs and 
high accuracy. 

 
 

Table 2: Values of electric field strength determinated experimental and numeric 
 

The coordinates 
of points (x,y) 

        [cm] 

 
(-10,0) 

 
(-8,0) 

 
(-6,0) 

 
(-4,0) 

 
(0,0) 

 
(4,0) 

 
(6,0) 

 
(8,0) 

 
(10,0) 

0 1 2 3 4 5 6 7 8 9 
Δlm  [cm] 1,2 1,2 1,3 1,3 1,3 1,3 1,3 1,2 1,2 
Ee    [V/m]  83,33 83,33 77 77 77 77 77 83,3 83,3 
En    [V/m] 86,72 84,76 82,11 80,08 79,4 80,10 82,09 84,36 86,87 
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Fig.5. Electric field strength along  of the field middle line between 
conductors 
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