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Abstract: In this paper there is performed a comparative study of the force that acts 
over a mobile coil pierced by current when it is placed in an external steady magnetic 
field. Firstly the determination of force is performed through analytic calculations and 
by experiments over a physical model from the Faculty of Electrotechnics, University 
of Craiova. The determined values are compared with those obtained through 
numerical calculations using a relatively new approach: the finite element method 
(FEM) in conjunction with asymptotic boundary conditions. From the comparative 
study of the magnetic force values one can formulate conclusions regarding the 
accuracy of the solutions.  
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1. ANALYTICAL DETERMINATION OF FORCE 

IN A STEADY MAGNETIC FIELD 
 
One considers, for the exemplification of 
determinations, a physical system (Fig. 1), 
consisting of a magnetic circuit supplied by a fixed 
coil with turns and pearced by a d.c. current. The 
magnetic core is made from the nonlinear magnetic 
material heaving the lamination on the direction of 
magnetic flux and it an air gap is made in one of its 
columns. A mobile coil, made under the shape of a 
rectangular frame with turns is pearced by a d.c. 
current. This coil is suspended by means of two 
elastic springs in the air-gap upper side.  
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Calculation hypothesis. For the sake of simplicity, 
one considers the core permeability as infinite 
( ). As a consequence, the magnetic field is 
concentrated within the air gap.  

∞→μ

Under the above hypothesis used for calculation, the 
force is determined using one the known analytical 
equations, presented below. 
 
1.1. Expression of the generalized magnetic force in 

magnetic fields at d.c. currents 
 

The generalized forces theorem is applied: 
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where:  is the system magnetic energy, 
concentrated in the air gap, and x is the mobile coil 
displacement within the air gap. 
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The magnetic energy is calculated with respect to 
coils inductivities, using the expression: 
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where  and  are the coils own inductances that 
do not depend on x displacement and  is coils’ 
magnetic coupling inductance, that depends on x.  
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As a consequence the magnetic force can be 
expressed as follows, with respect to currents and 
mutual inductance: 
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1.2. Magnetic force calculated with Laplace's 

expression 
 

The magnetic force that acts over a rectilinear 
conductor, pierced by current, placed along a 
direction perpendicular to an external uniform 
magnetic field lines is given the known relation: 
 
 lIBFm = . (4) 
 



in which, for the considered system, B is the 
magnetic inductance in the air gap, produced by the 
current ,  is the total current through the 
mobile coil, and  is the length of the coil side 
place in the air gap, that is perpendicular to the 
magnetic field lines.  
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The final expression used for the magnetic force 
calculation, obtained from the eq. (3) or (4) is: 
 
 21m IIkF = , (5) 
 
where we used the constant value: 
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For the system consisting of the coils with  turns 
and  turns respectively,  the magnetic core 
thickness,  b, and the magnetic circuit air gap, 

1N

2N
,δ  the 

magnetic force is proportional to the product of 
currents induced into the coils. 
An analytical determination of force, with an 
improved accuracy, can be magnetic circuit approch. 
This approch  will be studed in a future paper when 
the core saturation is taken into account. 

 
1.3. Magnetic force calculated with Lorentz's 

expression 
 
In general, the flux magnetic density is not  constant 
over the whole section of the conductor or of the 
coil. In this case, the magnetic force can be 
numerical computed, with an improved accuracy, 
with the  folowing integral  over the volum of coil: 
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2. EXPERIMENTAL PROCEDURE FOR THE 

MAGNETIC FORCE  DETERMINATION 
 

In order to perform an experimental determination of 
the magnetic force, in the laboratory of Electrical 
Engineering Department it was realized the device 
and experimental schematic shown in Fig. 1. The 
corresponding experimental procedure is presented 
by (Pu]ca]u, S. and col., 1990).  
The constructive features of the magnetic circuit and 
the constants from the equations (5) and (8) are 
presented in table 1. 

 
Table 1: Constructive features of magnetic circuit 

 
Fixed coil N1 = 4000 turns, axial section dimensions: mm)2050(ed ×=×  
Mobile coil N2 = 100 turns, springs’ the elasticity constant,  ke= 63 N/m 

Magnetic 
circuit 
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N452,4k = , , ,  , 

, , 

m1070a 3−⋅= m1053b 3−⋅= m10147c 3−⋅=

,m10200e,m1025d 33 −− ⋅=⋅= m1050g 3−⋅= m106 3−⋅=δ
(d × e) is the dimensions of the fixed coil.                

 
The coils are connected by 2 d.c. sources,  and 

, by means of 2 series variable resistors  
and . The currents determined in coils are 
measured with the ampermeters A1 and A2, with a 
precision class of 0.5. The sources polarities at coils 
terminals are chosen so as determine an attraction 
force in the mobile coil air gap. Within the coil 
springs an elastic force is generated, as a reaction to 
the magnetic force. 
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The elastic force is proportional to the displacement 
x of the mobile coil and has the expression: 
 
 xkF ee = , (8) 
 
where  is springs’ the elasticity constant. ek
When the coil is in an equilibrium state, both forces 
(with contrary senses) are balanced: 
 
 em FF = . (9) 
 

For various values of currents through coils, there 
was determined the springs elongation, x, using a 
ruler scaled in millimeters. The measured data are 
substituted in the magnetic force expression (5) and 
in the elastic force expression (8), and the values are 
gathered in table 3. In principle, the calculated 
values of both forces must coincide. 
 

3. NUMERICAL DETERMINATION OF 
MAGNETIC FORCE 

 
The magnetic field produced in the magnetic circuit 
air gap can be computed with an improved accuracy. 
For this aim one uses the FEM analysis (Pei-bai 
Zhou, 1993, Silvester, P.P.,1990  and Pasare S., 
1999) for a model closed to the real physical system. 
One starts from the differential equation of the 
vectorial magnetic potential for a bounded field 
domain around the magnetic circuit. The domain 
boundary and boundary conditions are chosen so as 
to get a better accuracy with respect to that 
corresponding to analytical solutions that use 
simplified models. 

 



 
 

3.1. Problem formulation and selection of 
mathematical model 

 
Problem formulation. The analyzed physical 
system is represented by a non-linear magnetic 
circuit excited by a fixed coil fed to d.c. current. The 
dimensions of the system are known (see table 1). 
Also there are provided the current through the 
excitation coil and the non-linear magnetization 
characteristic of the ferromagnetic core (table 2 and 
Fig. 2). One determines the magnetic induction 
within the circuit air gap.  
Problem type. The problem is considered to be a 
bidimensional problem for the analysis of magnetic 
fields with plane-parallel symmetry, reported to the 

cartesian system of coordinates (x,y) or to the polar 
system of coordinates (r,θ).  
The analysis plane is perpendicular over the 
magnetic core width. 
The operational differential equation for the 
vectorial magnetic potential is given by the general 
expression: 
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that can be written in particular forms (using 
cartesian or polar coordinates), for the 3 material 
media from field’s domains: the magnetic core – 



nonlinear area, the conducting winding and air, as 
linear areas (Fig. 3).  
The magnetic potential A and the current density J 
are the components of the corresponding vector 

quantities along the Oz axis, perpendicular on the 
analysis plane. 

 
Table 2 

 
B(T) 0  0,4  0,5  0,6 0,8   1 1,2  1,3 1,4  1,5 1,52 
H (A/m) 0 200 250  300 400 600 1000 1300 1830 2500 3000 

 
 
Field domain boundary is chosen so as to have a 
circular shape, with the radius  and the center in 
the central zone of the magnetic circuit, on which is 
employed a mixed condition of Robin type 
(asymptotic boundary condition). This boundary 
condition is employed because the field domain with 
infinite boundary must be limited to a finite domain 
with circular boundary. 
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Robin’s condition for any potential function, u, has 
the general expression: 
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The same condition can be written as follows for the 
magnetic potential (Chen, Q. and Konrad, A.,1997): 
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where the coefficients are provided by the 
expressions: 
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Fig. 2. Non-linear characteristic B(H) of magnetic material 

 
 
The expression (11-b) results from the magnetic 
potential approximation, outside the circular 
boundary, using trigonometric series of harmonics 
from which one uses only the fundamental harmonic 
as being the most significant with respect to the 
other harmonics of higher orders: 
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condition becomes: 
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3.2. Equations with finite elements and their solving 

 
For the analysis of the steady magnetic field 
problem, in the plane domain with circular boundary 
and Robin conditions, one applies the variational 
finite element method. The differential equations of 
vector magnetic potential (10) are substituted by an 
algebraic equations equivalent system, with finite 
elements, obtained through the minimization of the 
associated energetic function.  



The energetic functional for the non-linear 
bidimensional plane-parallel problem using cartesian 
coordinates has the expression: 
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where: is the circular plane surface of the field’s 
domain, bounded by the circular boundary , 

ΓS
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is obtained from the nonlinear characteristic 
given by Fig. 2, for the magnetic core, and the 

functions  and  are obtained through 
identification from (11a) and (11b). 
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In the linear subdomains, where the coils conductors 
are placed, and within the air gap (where 0J = ), the 
function expression is accordingly modified. The 
functional expression in polar coordinates is  
actually the expression in cylindrical coordinates in 
the plane rOz, where the only nonzero component of 
the magnetic potential is that along the Oz axis (as in 
the case of rectangular coordinates).  
 
Field domain meshing is performed by means of 
linear triangular finite elements. 
A convenient mesh step was selected, and so it was 
generated a mesh with 6238 linear triangular 
elements with 3192 nodes. The energetic functional, 
considering the FEM, is minimized with respect to 
the potentials associated to the mesh nodes and 
yields the nonlinear algebraic equations with FEM. 
 
Field problem solving is performed by means of the 
FEMM program  (Meeker, D., 2001).  To solve the 
nonlinear equations one uses, in an iterative manner, 
the conjugated gradient method. The equipotential 

lines spectrum from the analyzed field domain is 
shown in Fig. 3. 

 
3.3. Numerical computation of the magnetic force 

 
For the determination of the magnetic force from the 
field problem numerical solution one must know the 
value of the magnetic flux density  from the 
magnetic circuit air gap.  
a). One assumes that the mobile coil fed to 
current does not influence the field from air gap. 
The magnetic flux density from air gap is indeed 
considered for a uniform field, except for its margins  
The magnetic force is determined by means of 
Laplace’s expression (4) where the magnetic flux 
density, B = B(I1), obtained numerically for various 
values of the current  is substituted. Table 3 
presents the values of magnetic force determined by 
all the presented methods: analytically (F

1I

m,a), 
experimentally (Fm,e) and numerically (Fm,n)- 
formula (4), for various values of the currents 



through coils and of numerically determined values 
of B (I1). 
b). One assumes that the mobile coil fed to 
current does influence the field from air gap. The 
magnetic flux density from air gap, in this case, is a 
ununiform field over the whole mobile coil (see 
Fig.4). The magnetic force is determined by means 

of Lorentz’s integral expression (7) where the 
magnetic flux density, B = B(I1, I2), is obtained 
numerically for various values of the currents and 
I

1I
2. In this case, the magnetic force can be computed, 

with an improved accuracy (see Table 4).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Second coil position 

    Fig.4. Magnetic flux density along of air gap , for I1 = 1A, I2 =0,3A 
 

Table 3 

 Procedures applicated to  
determination  

of magnetic force 
 

Formula 
    (5) 

Experi-
mental 
values 
 

Formula 
    (4) 

Absolute 
   error 

Relative 
 error 

Nr. 
crt. 

I1 
(A) 

I2 
(A) 

B(I1) 
(T) 

310x −⋅   
(m) 

   Fm,a 
    (N) 

Fm,e= Fe
    (N) 

   Fm,n
    (N) 

       *E 
    (N) 

 

     **Er
   (%) 

 
  0   1   2     3    4     5     6    7 8 9 
  1  0,5  0,3 0,378     9  0,667 0,567  0,601    0,034    2,25 
  2  0,5  0,4 0,378    13  0,890 0,819  0,801    0,018    1,19 
  3  0,8  0,3 0,593    12  1,068 0,756  0,942    0,186    12,3 
  4  0,8  0,4 0,593    16  1,424 1,008  1,257    0,249    16,2 
  5   1  0,3 0,713    15  1,335 0,945  1,132    0,187    12,3 
  6   1  0,4 0,713    19  1,780 1,197  1,511    0,314    20,7 

 

*E  = |Fm,n- Fe (N)|,    **Er = 100 *E/Fm,n, max(%) 
 
 

Table 4:  Magnetic force calculated numerically 
 

I1 (A) 0,5 0,5 0,8 0,8 1 1 
I2 (A) 0,3 0,4 0,3 0,4 0,3 0,4 
Fm,n (N)-formula (4) 0,601 0,801 0,942 1,257 1,132 1,511 
Fm,n (N)-formula (7) 0,647 0,865 1,05 1,356 1,191 1,590 

 



 
4. CONCLUSIONS 

 
The comparative analysis concerning the values of 
the magnetic force is going to the following 
conclusions: 

1.The differences between the force values 
determined analytically and experimentally 
respectively for identical currents, are significant 
and becomes higher for higher currents. 
2.The columns 8 and 9 presents the absolute and 
respectively the relative errors with respect to the 
maximum numerical value of the force from table. 
For a maximum value of currents ( =1A and 
I

1I
2=0,4A), the percent error reaches a maximum 

(20,7 %). This situation is caused by the major 
differences between the models of calculus that 
uses major simplifying assumptions, and  the real 
physical model. 
3. One must mention, as an additional source of 
errors during the determination through calculations 
of the magnetic force with formula (4), the 
neglecting of the influence of current through the 
mobile coil over the resulting magnetic field from 
the magnetic circuit air gap.  
4. The numerical determination of magnetic force 
using the formula (7) presents a very accuracy as it 
does take into account the flux leakage, the core 
saturation and the influence of current through the 
second coil.   
5. The real problem of the magnetic field is three-
dimensional. The definition of a problem on two-

dimensional planar domain is a first step of the 
study of force in a steady magnetic field with 
asymptotic boundary conditions. 
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