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Abstract − The paper presents a new version of state 
variable method for circuit analysis with widely 
separated time scales. Widely-separated time scales 
appear in many electronic circuits, making traditional 
analysis difficult even impossible if the circuits are highly 
nonlinear. The key idea is to use multiple time variables, 
which enable signals with widely separated rates of 
variation to be represented efficiently. The differential 
algebraic equations (DAEs) describing the RF-IC circuits 
are transformed in multi-time partial differential 
equations (MPDEs). Using the new numerical technique 
results in computation time and memory significant gain. 
In order to solve MPDE we use the associated resistive 
discrete equivalent circuits (companion circuits) for the 
dynamic circuit elements. 
 
Keywords: Multiple time variables, Radio frequency analog 
circuit analysis. 

1. INTRODUCTION 

A very important step in radio-frequency integrated 
circuits (RF-IC) design is the circuit simulation. The 
RF-IC applications has carrier frequencies in the GHz-
range with modulating signals in the kHz-range. Due 
to the broad signal spectrum (about six orders of 
magnitude) finding of the steady-state by the brute-
force method is very time consuming [1, 2]. These 
signals are called multirate signals, and they contain 
“components” that vary at two or more widely 
separated rates. Such signals arise in various physical 
systems, as communication circuits (up/down-
converters, automatic gain-control circuits), cycle-
chopping and switched power converters, switched-
capacitor filters, pulsewidth-modulation circuits etc. 
These systems are typically difficult to analyze using 
traditional numerical integration algorithms, such as 
those used in programs like SPICE [1]. The difficulty 
consists in the widely disparate rates: following fast-
varying signal components long enough to obtain 
information about the slowly-varying ones is 
computationally expensive, and can also be inaccurate.  

Many multirate signals can be represented 
efficiently as functions of two or more time variables, 
i.e. as multivariate functions. If a circuit is described 
with differential-algebraic equations (DAE), using 
multivariate functions for the unknowns leads 
naturally to a partial differential equation (PDE) form 

called Multirate Partial Differential Equation 
(MPDE). If we apply time-domain numerical methods 
to solve the MPDE directly for the multivariate forms 
of the unknowns, we are able to analyze the 
combination of strong nonlinearities and multirate 
signals. 

In the case of the lumped analog nonlinear circuits, 
because the numerical differentiation is a relatively 
inaccurate operation, we approximate the kk vq −  
characteristic of each nonlinear capacitor and the 

kk i−ϕ  characteristic of each nonlinear inductor by 
piecewise-linear segments. In order to simplify the 
description of the nonlinear resistors, their iv −  
characteristics may be approximated by piecewise-
linear continuous curves, or by new characteristics in 
which the nonlinearities are transferred to the sources, 
[8 - 12]. Using the state equations (SEs) in partially 
symbolic form, we obtain a significant efficiency in 
circuit design and an improvement of the accuracy in 
the numerical calculations by considering as symbols 
only the parameters corresponding to the nonlinear 
circuit elements.  

SEs for lumped piecewise-linear nonlinear 
analogue circuits have the following form [11-13]:  

 

 yBByAxx 1++=  (1) 

where: the matrices A, B and B1 contain the 
incremental capacitances, the incremental inductances, 
the incremental resistances and the incremental 
conductances corresponding to the nonlinear circuit 

elements, [ ]ttt ,)( LcCtt ivx = - is the state variable vector 
( Ctv - the tree branch capacitor voltages and Lci - the 
link inductor currents) with ( )00 txx =  initial 

condition; [ ]ttt , jey = - is the input vector, and the 
superscript “t” denotes the transpose. If the analyzed 
circuit exhibits multirate behaviour, its variables can 
be represented efficiently using multiple time 
variables. If there are p multivariate forms of change, p 
time-scales are used. We denote the multivariate forms 
of x(t) and y(t) by ( )ptt ,...,ˆ 1x  and ( )ptt ,...,ˆ 1y . 

The MPDE corresponding to (1) is: 
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In [1] it is shown that there is a relation between 
the MPDE and the SEs of the circuit. According to the 
theorem 1 from [1] the solutions of the SEs are 
available on the “diagonal” lines along the MPDE 
multivariate solutions. 

Because the SEs are easy to implement in a 
program, we use these equations to obtain numerical 
solution of the MPDE. Replacing each capacitor and 
each inductor (magnetic coupled or not) by a discrete 
resistive circuit model associated with an implicit 
numerical integration algorithm, the transient analysis 
of the nonlinear circuits can be reduced to the dc 
analysis of a sequence of equivalent nonlinear resistive 
circuits [4-7, 11, 12]. By using the backward 
differential formula of high order, the efficiency is 
achieved without compromising accuracy. 

2. DESCRIPTION OF THE METHOD 

Considering the two-rate case, MPDE (2) becomes: 
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with the periodic boundary conditions (BCs) 
( ) ( )212211 ,ˆ,ˆ ttTtTt xx =++ . We consider a uniform 

grid { ( )jit , } of size (n1+1)×(p2+1) on the rectangle 
[0,m1T1]×[0,T2] (Fig.1), where )()( 21 j__i t,ti,jt = , with 

11 )1( hit i −=− , t2_j =(i-2)T2+(j-1)h2, ,1,1 1 += ni  

1,1 2 += pj ; h1=m1T1/n1 = T1/p1, and h2=T2/p2. 
Consider that the slow components of ( )tb  and ( )tx  
depend on t1 and the fast components depend on t2. 

In order to integrate the state equation (1) we use 
the backward-differentiation formula (BDF) which 
approximates to within prescribed accuracy the present 
value ( )1+ntx  of the time derivative of ( )1+ntx  in terms 
of 1+nx  and p past values 11,...,, +−− pnnn xxx :  

 ( )on

p

k
knkn xx

h
xa

h
x __

0
11

11
−=∑=

=
−++  (4) 

where: paaa ,...,, 10  are constants, nn tth −= +1  is the 

present step size, 10_ += nn xax  is the new value of x, 

and ox_  is the “old” value. 
We can also use other numerical implicit 

integration algorithms like the trapezoidal algorithm or 
one of Gear’s algorithms. 

 
Figure 1.  A uniform grid { ( )jit , } of size ( ) ( )1211 +×+ pn . 

For the first periods T1 and T2 (corresponding to the 
grid of size (p1+1)×(p2+1)), we assume that the BCs 
are 0.0)1(ˆ =,jx , 11 2 += p,j  and 0.0)1,(ˆ =ix , i =1,2; 

)1(ˆ)11(ˆ 2 +=+ i,p,i xx , 1,2 pi = ; on the row t1 = 0, and 
on the column t2 = 0 respectively. We start the 
integration process on the row 2 from the point 

)()22( 2_22_1 ,tt,t = , with t1_2=h1, t2_2=h2 (in respect of 
the fast time t2) from the column 2 to the column p2+1 
and so on until we arrive in the point t (2, p2+1), with 
t1_2=h1, t2_p2+1=p2h2=T2. After that, we integrate one 
time step h1 in respect of the slow time t1 –assigning to 
x̂ (2, 1) the value of x̂ (2, p2+1) – and then we start 

again the integration process on the row 3 (in respect 
of the fast time t2) from the column 2 to the column 
p2+1, and so on until we arrive in the point 

)()11( 121121 21 ++=++ _p_p ,tt,ppt , with t1_p1+1=p1h1=T1 
and t2_p2+1=p1h2p2=p1T2.  

Remark 1. Before passing to the integration for 
the next grid (each grid having the size (p1+1)×(p2+1)), 
starting from the point t (p1+2,2)=(t1_p1+2,t2_2), with 
t1_p1+2=(p1+1)h1, t2_2=p1T2+h2, we must consider the 
following boundary conditions:  

1)1()12( 211 ++=+ p,pˆ,pˆ xx , and respectively 

)11(ˆ)1(ˆ 211 ++=+ ,pi-pi,p xx , with 13 1 += p,i  on 
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the column t2 = 0, and x̂ (p1+1,j), 12 2 += p,j  on the 
row t1 = T1. After that, an integration with the 
integration step h1 in respect of the slow time t1 is 
performed from the point ( )11 21 ++ p,pt  to the point 
( )221 ,pt +  (in this point we assign to ( )2,1ˆ 1 +px  the 

value of ( )1,1ˆ 12 ++ ppx ) (Fig. 1). 
Proceeding in this way for the other periods T1 and 

T2 we shall integrate the MPDE on the whole uniform 
grid of size ( ) ( )11 12 +×+ np , arriving in the point 

),()11( 121121 21 ++=++ _p_n tt,pnt , with 1111 1
Tmt n_ =+ , 

and  2112 2
Tnt p_ =+ . At each time t (i,j) we have to 

solve a system of nonlinear algebraic equations. To 
this end we can use the Newton-Raphson algorithm or 
other efficient numerical iteration algorithms. 

The discrete resistive circuit equations, associated 
with the BDF of the first order ( 10 =a  and 11 −=a ) 
when the characteristics of the nonlinear elements are 
approximated by piecewise-linear continuous curves, 
at ( )jit ,  (with ( ) 11 1 hit i −= , ( ) ( ) 222 11 hjTit j −+−= ) 
(at each integration step h1 we perform p2 integrations 
with size step h2), and at the (k+1)th iteration of the 
Newton-Raphson algorithm, corresponding to the state 
equations (1), have the following form: 
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where: ( )jixx n ,_ =  is the new value of the state 

vector x at the moment ( )jit , , ( )jio ,11_ −= xx  

( ( )1,2_ −= jio xx ) is the “old” value of the state 

vector x. at the moment ( )jit ,1−  (at the moment 
( )1, −jit ), ( )jin ,_ yy =  is the new value of input 

vector y at ( )jit , , ( )jio ,11_ −= yy  

( ( )1,2_ −= jio yy ) is the “old” value of the input 

vector y at the moment ( )jit ,1−  (at the moment 
( )1, −jit ). The vectors: ( )ji,y , ( )ji ,1−y  and 
( )1, −jiy  represent the contributions of the excitation  

sources (independent current and voltage sources), of 
the sources corresponding to the approximations of 
nonlinear resistors and the initial values of the inductor 
currents and of the capacitor voltages which are 
determined from the previous time steps ( )1, −jit  of 
the slow time t1, and ( )jit ,1−  of the fast time t2. The 
subscripts (i, j), (i-1, j), (1,j) and (1,j-1) represent the 
time moments. 

The structure of the equations (5) leads to the 
elimination of the state variable that appears in the 

least number of state equations. Elimination procedure 
is equivalent to substituting the variables involved in 
the smallest number of equations and removing the 
equations involving the smallest number of variables 
(some of them are the variables to be eliminated) in the 
state equations (5). According to this rule, we select 
the state equations corresponding to the eliminated 
state variables and introducing them in the remained 
state equations, we obtain the state equations in the 
normal form for the remained state variables. These 
state equations have as symbols the old values of all 
state variables and time step size. The remained state 
equations can easy be integrated to obtain the circuit 
response. With this approach we obtain important 
savings in computing time and memory.  

3. EXAMPLE 

In Fig. 2 is shown the equivalent circuit for the TV 
video-frequency circuit. The voltage-controlled 
nonlinear resistor R13 is modeled by an equivalent 
scheme corresponding to the approximation of the v-i 
characteristic by a continuous piecewise linear curve:  
 

U13 [V] -1000.0 0.0 0.1 100.0 

I13 [mA] -1.0e-15 0.0 10.0 10000.0 

 
The state vector has the following structure: 

X=[UC5,UC6,UC7,UC8,UC9,IL22,IL23,IL24,UC2,UC4,UC3]t   (6) 

The eliminated state variables are: 

          el_st_var s = [UC5,IL22,IL23,IL24,UC9,UC4]t        (7) 

The remained state equations in partially-symbolic 
normal form, when we consider as symbols the input 
vector, the “old” value of state variables and the 
associated parameters to the nonlinear circuit 
elements, (the full symbolic form can be obtained, but 
it is a very large expression) of the circuit in Fig. 2, 
have the form: 
Rem_st_eqs:={1.500*UC8_n-.5000*UC8_o1-1.000*UC8_o2 = 
 .2859e-1*UC5_o2+.1624e-4*e1+.1429e-1*UC5_o1+ 
.4639e-3*IL22_o1+.9278e-3*IL22_o2+.4290e-1*UC6_n- 
.2893e-1*UC9_o2+.2706e-3*IL23_o2+.1353e-3*IL24_o1+ 
.2706e-3*IL24_o2-.1624e-4*UC2_n+.2639e-3*UC4_o1+ 
.5280e-3*UC4_o2+.2593e-4*UC3_n-.4505e-1*UC8_n- 
.8078e-5*UC7_n+.1353e-3*IL23_o1-.1446e-1*UC9_o1 ; 

 1.500*UC3_n-.5000*UC3_o1-1.000*UC3_o2 = 
 -.2131e-1*UC5_o2+.1268e-2*e1-.1066e-1*UC5_o1- 
.1138e-1*IL22_o1-.2276e-1*IL22_o2-.3249e-1*UC6_n+ 
.1245e-1*UC9_o2-.6638e-2*IL23_o2-.3319e-2*IL24_o1- 
.6638e-2*IL24_o2-.1268e-2*UC2_n+.4683e-2*UC4_o1+ 
.9367e-2*UC4_o2-.2303e-2*UC3_n+.1879e-1*UC8_n+ 
.1981e-3*UC7_n-.3319e-2*IL23_o1+.6220e-2*UC9_o1 ;  

1.500*UC6_n-.5000*UC6_o1-1.000*UC6_o2 = 
 -.1204e-1*UC5_o2+.1540e-3*e1-.6017e-2*UC5_o1+ 
.4401e-2*IL22_o1+.8804e-2*IL22_o2-.2003e-1*UC6_n+ 
.6654e-2*UC9_o2-.2520e-1*IL23_o2-.1261e-1*IL24_o1- 
.2520e-1*IL24_o2-.1540e-3*UC2_n+.2505e-2*UC4_o1+ 
.5011e-2*UC4_o2+.2460e-3*UC3_n+.1006e-1*UC8_n+ 
.7525e-3*UC7_n-.1261e-1*IL23_o1+.3327e-2*UC9_o1 ;  
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1.500*UC7_n-.5000*UC7_o1-1.000*UC7_o2 = 
 -.3074e-1*UC7_n+.1960e-1*IL23_o1+.3922e- 
1*IL23_o2+.1170e-2*UC6_n ; 

1.500*UC2_n-.5000*UC2_o1-1.000*UC2_o2 = 
 .8335e-2*e1-.8335e-2*UC3_n-.8335e- 
2*UC2_n-.5000/Rdu13*UC2_n-.5000*Ij14} ; 
 

 

Figure 2.   Diagram of the TV video-frequency circuit.  

 
If we assume that the input signal e1(t) has the 

following expression:  

( ) ( )( ) ( )
 400,4

,2sin2sin9.00.1

0

01

MHzfMHzf
Vftfte

MA

MA

==
+= ππ

 

The bi-variate excitations have the expressions:  

( ) ( )( ) ( )
 400,4

,2sin2sin9.00.1,ˆ

0

201211
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Vtftftte
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and was plotted in Fig. 3. 
 

 

Figure 3.  The bi-variate excitation e1(t1,t2). 

Using the method presented in Section 2 the 
variations of the capacitor voltages vC2, vC8 and the 
inductor current iL21, in respect to the time, are shown 
in Figures 4, 6, and 8, respectively, in a representation 
with two-time variables, and in Figures 5, 7, and 9, 
respectively, in a one-time variable representation. 

 

 

Figure 4.  Two-time variation of the output voltage vC2  

 

 

Figure 5.  One-time variation of the output voltage vC2. 

 

 

Figure 6.  Two-time variation of the output voltage vC8. 
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Figure 7.   One-time variation of the output voltage vC8. 

 

Figure 8.  Two-time variation of the output voltageiL21. 

 

Figure 9.  One-time variation of the output voltage iL21. 

4. CONCLUSIONS 

An efficient numerical approach for analyzing strongly 
nonlinear multirate circuits has been presented. The 
procedure uses multiple time variables to describe 
multirate behaviour, leading to a PDE called MPDE. 
Applying appropriate BCs to this MPDE, and using 
the state equations lead to quasi-periodic and 

envelope-modulated solutions. By using the backward 
differential formula of high order, the efficiency is 
achieved without compromising accuracy. Presenting 
the results in three-dimensional form is useful for 
visualizing waveforms with widely separated time 
scales (as in the case of RF-IC). The new technique 
can solve a variety of circuits with a mixture of strong 
and weak nonlinearities that are hard to simulate 
otherway. 
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