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Abstract −−−− Carefully planned magnetic shielding can 
protect objects and beings from the influence of 
magnetic fields in the whole frequency spectrum. In the 
paper it is shown that the most efficient magnetic 
shielding can be performed by a sphere of more 
ferromagnetic layers with non-magnetic material in 
between, which reduces the quantity of ferromagnetic 
material to minimum. 

Keywords: electromagnetic fields, ferromagnetics, 
shielding.  

1. INTRODUCTION 

Many of electromagnetic equipment generate strong 
magnetic fields in the environment. Therefore, it is 
often necessary to protect electrical appliances, as 
well as human beings from such strong fields [1]. 
The efficient electromagnetic shielding is performed 
by placing a conductive material of the certain 
thickness around the object that has to be protected. 
The shield thickness depends on frequency of the 
electromagnetic energy and on the conductivity of its 
material. The appropriate magnetic shielding is 
achieved exclusively by ferromagnetic materials. Not 
only diverse electrical appliances, but also human 
beings have to be protected when exposed to very 
strong magnetic fields. The most efficient protection 
can be ensured by a spherical shape but also using 
some other closed surfaces. 
The exact solution of a ferromagnetic sphere in a 
homogeneous magnetic field is calculated in [2] and 
that of an ellipsoid and cylinder in [3]. The solutions 
are based on Laplace equation ∇2ϕ = 0, where ϕ is 
scalar magnetic potential.  
The ferromagnetic sphere in a homogeneous 
magnetic field H0 behaves like a magnetic dipole [4]. 
The sphere divides the space in two parts, each with 
their own permeability µ1 and µ2 (Fig. 1).  
 
 
 
 
 
 
 
 
 

Fig.1: Feromagnetic sphere in a homogenous 
magnetic field H0. 

Magnetic field inside the sphere (0 ≤ r ≤ r1) is also 
homogeneous and less than H0, actually it is H0 + H1. 

The scalar magnetic potential can be written: 

( ) ϑϕ cos101 rHH +−=   (1) 

Magnetic scalar potential for the outer space (r ≥ r1) 
can be written on the basis of the analytical solution 
as:  
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where p is a dipole magnetic moment of a magnetic 
sphere, taken analoguely to a dielectric sphere: 
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Direction of a homogeneous magnetic field H0 is the 
direction of the dipole magnetic moment. 

The exact solution of a hollow ferromagnetic sphere in 
a homogeneous magnetic field is given in [3,2]. Of 
course, if the approach with the dipoles is applied, it 
will result in the same solution. The protection factor 
of other closed objects can be calculated. 
 
 

 

 

 

Fig.2: Hollow feromagnetic sphere in a homogenous               
magnetic field H0. 

The hollow magnetic sphere divides the space with its 
shells in three parts, with permeabilities µ1, µ2 and µ3 

(Fig. 2). The hollow sphere consists of two concentric 
layers; its behaviour can be seen as a superposition of 
the two adjacent layers. This means that the both 
spheres become dipoles, when influenced by the outer 
magnetic field. Their dipole moments are p1 and p2. 
So, in the area 1, with r < r1, the homogeneous 
magnetic field has the value of H0 + H1 + H2; in the 
area 2, where r1 ≤ r ≤  r2 the magnetic field is H0 + H2 
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with the superposition of the field of the dipoles p1 of 
the inner sphere. In the area 3, where r ≥ r2 the field is 
the sum of the homogeneous field H0 and the fields of 
the dipoles p1 and p2 of the both spheres. 

Scalar magnetic potentials for the three areas are given 
as follows: 

( ) ϑϕ cos2101 rHHH ++−=  ,  r ≤ r1                              (4a) 
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In order to determine the assumed quantities H1, H2, p1 
and p2 , the boundary conditions valid on r = r1 and r = 
r2 have to be enforced. The chosen boundary 
conditions refer to the equality of the normal 
components of the magnetic induction ( rn ∂∂⋅⋅ ϕµr

), 

as well as of the tangential components of the 
magnetic field ( ϑϕ ∂∂ r ) on the both sides of the 

boundary. 

Thus, the unknown quantities of H1, H2, p1 and p2 are 
given:  
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where D is 
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and V2 is the outer sphere volume 
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If we let r1 → 0, i.e. that the inner sphere dissappears, 
then the result for alone sphere is obtained. 

2. MULTILAYERED FERROMAGNETIC 
SPHERE IN A HOMOGENEOUS MAGNETIC 
FIELD 

It will be shown that the most efficient protection from 
the magnetic fields is the layered shielding. The 
efficiency of the protection is proven by an application 
of multilayered concentric spheres (Fig. 3). Sphere 
shells 1,2,3..n represent boundaries between 
ferromagnetic layers. Outer homogeneous magnetic 

field H0 polarizes the concentric spheres so that they 
begin to behave like magnetic dipoles. As it is already 
shown by equation (4), the field in the boundary 
sphere consists of a homogeneous field as well as of a 
dipole field of all the spheres, that are inside the 
observed sphere. 
 
 
 
 
 
 
 
 
 
 
Fig.3: Multilayered ferromagnetic sphere in a 
homogenous magnetic field H0. 

For example, in the k-th layer the total field is a sum of 
a homogeneous field H0 and of homogeneous fields of 
all the k-th to n-th spheres, as well as of the dipole 
fields of all the inner spheres (from 1 to (k-1)). 

Therefore, the scalar potential of the k-th layer can be 
written as: 
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Let the permeabilities of the layers be different, having 
indices of the outer boundary sphere. The equation (7) 
is valid for all the layers from 1 to n, as well as for the 
space beyond the n-th layer. The unknowns are 
magnetic fields Hi and dipoles pi (for i = 1,...n). 

In order to determine 2n unknowns, it is necessary to 
solve 2n equations, which are given from the boundary 
conditions at all n boundaries: 
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with  r = rk . 

The 2n linear equations thus obtained can be written in 
the matrix form [5] 
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The matrices 
n

nkaA =  and 
n

nkcC =  are diagonal 

matrices of the n-th order with diagonal terms 
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where Vk is a volume of the k-th sphere, µk 
permeability of the layer in the k-th sphere and µk+1 
permeability of the layer out of the k-th sphere. 

The matrix B is also triangular matrix of the n-th order 
with the terms 
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Matrix B
~

 is a transposed matrix B. 

Matrices 
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are vectors with n components. The elements of 
vectors H and p are unknown homogeneous magnetic 
fields (Hi) and unknowns magnetic dipoles (pi). By 
solving equation (9) the following is given 

AHBp 1−−=    (13) 
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where  

ACBBS 1−−=   (15) 

the auxiliary quadratic matrix of n-th order 
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Vk and Vj are sphere volumes. 

The unknown quantities of the field and dipoles are 
calculated by solving equations (13) and (14). The 
magnetic field protection factor is defined as a ratio of 
the homogeneous field inside the sphere and outer 
homogeneous field H0: 
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The inner space is the one that has to be protected 
from the outer strong magnetic field H0. 

3. FERROMAGNETIC LAYERED SPHERE 

The layered sphere consists of more concentric 
ferromagnetic spherical layers with air in between. Air 
is also inside the first and outside the last layer. It is 
assumed that the relative permeability of all the 

ferromagnetic layers is the same and very large (µ' 
>>1). In this case the equations can be simplified, 
because for the odd-layered spheres (k = 1,3,5,..,2n-1) 
permeability µk = µ0, and for all the even layered (k = 
2,4,6,...,2n) the permeability is µk = µ' µ0. 

Thus, the diagonal members of the S-matrix (16) are 
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with the unchanged other members (sjk) of the matrix 
(16). 

For example, in the case of one ferromagnetic layer, 
there are two boundary spheres V1 and V2, so the 
equation (14) can be written as 
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By combining (19) and (17) with the condition µ' >> 
1, the magnetic protection factor for the sphere (eq. 
17) with one ferromagnetic layer is given 
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Sphere with two ferromagnetic layers of the same 
material has four boundary spheres, so its S matrix is: 
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The protection factor for the two ferromagnetic layers 
can be calculated in the same way as before, with the 
same condition µ' >> 1  
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From (22) it can be seen that the efficient magnetic 
protection can be performed by ferromagnetic 
materials of a high relative permeability µ'. Also, it is 
obvious that the layers thicknesses influence the 
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protection. If the magnetic protection in the hollow 
one-layered sphere should be improved, then the new 
ferromagnetic layers with air in between should be 
added. 

 If the same ratio of the neighbouring spheres radii is 
assumed 
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then the protection factor can be written as 

3

2

2
1

'2

9

k
Z 








=

µ
   (24) 

with the k as a ratio constant 
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For example, if the outer field in a sphere with radius 
r1 = 250 mm should be decreased to 1 % of its value 
by a ferromagnetic material of a relative permeability 
µ’ = 1000, one-layered sphere of a thickness d1 = 55 
mm is needed. The layer thickness, which implies 
amount of material, could be smaller by taking 
ferromagnetic material of a higher permeability. Also, 
reduction of a material can be achieved by a two-
layered ferromagnetic spheres. For the same protection 
factor and for the same material with the assumption 
(23), the ratio constant k = 0.1266. The total thickness 
of the both membranes is 24.2 mm, instead of 55 mm 
and the volume of the used magnetic material is 2.43 
times less than in the first case. 

Ferromagnetic materials are also very applicable for 
the electromagnetic fields protection at higher 
frequencies, because the penetration depth is 
decreasing with increasing relative permeability µ’. 
Thus, for the required relative permeability µ’ = 1000, 
radius r1 = 250 mm and electric conductivity σ = 1.5 x 
104 S/m the penetration depth at frequency of 50 Hz is 
1.83 mm. If the same field should be decreased to 1 % 
of its value, the ferromagnetic material thickness 
should be around 8.4 mm.  

4. CONCLUSIONS 

Magnetic shields are used for the protection of some 
electrical appliances and human beings from the strong 
magnetic fields. One of the most efficient object 
protection is achieved by shields shaped like a sphere. 
The recommended sphere consists of several 
ferromagnetic layers made from highly permeable 
magnetic materials. Combination of ferromagnetic and 
air (non-magnetic) layers can reduce magnetic fields 
inside the sphere, as required. If a ferromagnetic 
material is not a highly permeable enough, this 

deficiency can be avoided by several ferromagnetic 
layers. It is shown through a calculus that in order to 
achieve the same degree of protection factor, the 
expense of needed ferromagnetic material is 
considerably less for two layers. The magnetic shields 
are also more efficient at higher frequencies because 
the penetration depth is decreasing with increasing 
permeability. 
The protection can be also performed by other closed 
shapes or surfaces, not only sphere, but all the three 
dimensions should be equal related to the sphere 
diameter. 
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