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Abstract – This paper deals with an analysis regarding 
identification and control of stability processes of an 
aircraft’s longitudinal and lateral move. The estimation 
of the transfer function for a stabile flight of an aircraft 
(longitudinal move) isn’t made using the most 
important estimation method (the least square method). 
Other three methods (origin pole compensation method, 
instrumental variables method and prediction error 
method – with the two variants) are used here to 
estimate all the coefficients of the transfer function of 
the longitudinal move of an aircraft. All these methods 
estimates the transfer function by the continue 
minimization of the error function. The lateral move 
model’s parameters are estimated using the least square 
method. Thus, a simulation program for discrete 
transfer function determination of the lateral move, for 
stabilization analyses and for time characteristics 
plotting of the leading system and estimated system 
output in random perturbation conditions is made; 
estimation errors are being calculated. 
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1. INTRODUCTION 

We consider the longitudinal move of an aircraft. 
One presents in the following pages some methods 
used for aircraft’s longitudinal and lateral moves 
identification. These methods calculate the 
coefficients of the transfer function in closed loop. It 
doesn’t matter if the system is stable or not. The most 
important thing is superpose of the estimated 
system’s response and the leading system’s response. 

2. THE ORIGIN POLE   COMPENSATION 
(CMMPM) 

A state estimator must assure the controllability of 
the system whose parameters are estimated, 
indifferent to adaptive structure. The least square 
method doesn’t always give models characterized by 
controllability. That’s why in some cases it must be 
modified.  
The system, whose parameters must be determined, is 
described by the equation  

 ( ) ( ) ( ) ( ) ( ) ( ) ,zzz 111 dteCtuMztyL q ++= −−−−  (1) 

where 1z−  is the delay operator and the polynomials 
)z( 1−L  and )z( 1−M  are 
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The estimated model Â  of the leading system 
A (aircraft), obtained by an parametric identification 

method, may be described by equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ,ˆzˆzˆzzˆ 111 dteCtuMtyL q ++= −−−−  (3) 

where ( )tê  is the noise applied to  the model and the 

polynomials ( ) ( )11 zˆ,zˆ −− ML  and ( )1zˆ −C  have 
expressions  
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CMMP algorithm (least square algorithm) 
modification is based upon the discrete transfer 
function modification through origin pole ( )0z =  
compensation. The modified CMMP algorithm 
(CMMPM) builds a convergent vector )(tν  and with 
it the vector of the estimated parameters [1] 

 ).()()(ˆ)(ˆ kkPkbkb ν+=′  (5) 

Thus, the coefficient b′ˆ  is almost non-null.  
The control law may be chosen of general form 

 ( ) ( ) ),(ˆ,z)(ˆ,z)( 11 kybSkubRku ′+′= −−  (6)  

with the polynomials 
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The closed loop system is described by equation [1] 
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and 

 [ ] ),1()()()()1( ++−=+ knkbkbkxke TT  (10) 

)1( +kn  is white noise. 

3. INSTRUMENTAL VARIABLES METHOD 
(MVI) 

This method is a generalization of CMMP. It gives 
the estimated parameters only for the determinist part 
of the model Â  and not for the parameters of the 
polynomial )z(ˆ 1−C  associated to the random 
perturbation. The leading system model )(A  is 
described by the equation (1) and the one of the 
estimated model )ˆ(A  by equation (3); in this equation 

one considers .1)z( 1 =−C  The equation equivalent to 
equation (3) is 

 ).(ˆˆ)()( kebkxky T +=  (11) 

By multiplication of this equation with −)(kW  
instrumental variable vector (whose elements haven’t 
physic significations, they are only necessary 
“instruments” for the b̂  estimation), one obtains the 
equation of estimator b̂ . 
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where N  is the measurements number; the vector W  
may be chosen different ways. Let vector W  be [2] 

( )[ ] ,)()2()1()( 1 T
WnkukukuzFkW −−−= − …  (14) 

where nmnW += ; if ( )1zˆ −L  and ( )1zˆ −M are the 

( )1z−L  and ( )1z−M  polynomials estimations, one 
chooses  

 ( ) ( ).zˆz 111 −−− = LF  (14)  

Let the transfer function associated to the 
longitudinal move of an aircraft be  

4321

321
11

z035,0z302,0z277,0z604,11
z0485,0z0513,0z2248,1449,1z)z(

−−−−

−−−
−−θ

δ +++−
+−−

=
p

H (15)      (15) 

The calculus program is presented in Appendix 1. 
The input u  and perturbation e  of the leading 

system are random type. For the parameters 
estimation of the vector b̂  one uses, in Matlab 
medium, the operator iv4. Using the instruction resid 
the residues associated to this method are calculated 
and plotted (figure 1). In figure 2 frequency 
characteristics (amplitude-frequency and phase-
frequency) for the leading system and for the 
estimated system (using CMMP and MVI methods) 
are plotted. 
  
 
 
 
 
 
 
 

 
 

Figure 1: Residues of CMMPM method 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Frequency characteristics for CMMP and 
MVI methods 

 
The discrete transfer function is  

4-3-2-1-

321
11

z 0,149  z 0,3262  z 0,108 - z 1,356 - 1 
z 0,081 z 0,288 -z 0,810 - 1,278z)z(ˆ

++
+

=
−−−

−−θ
δ p

H  (16) 

4. THE PREDICTION ERROR METHOD (MEP) 

This method is more complicated than the others, but 
it is more precisely. MEP calculates the coefficients 
of the polynomials ( ) ( )11 z,z −− LM  and the 
coefficients of the polynomials that “modify” 
perturbation which affects the leading system. 
Starting from an initial estimation, one calculates the 
parameter of the system through successive iterations 
till the convergence criteria is reached. The initial 
estimations used by MEP may be obtained using one 
of the previous methods [2].  
The prediction error is the perturbation e   

 .ŷye −=  (17) 
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The leading system is described by equation  

 ( ) ( ) ( ) .zzz 111 eCuMyL −−− +=  (18) 

Thus, the residue is 

 ( ) ( ) ( )[ ].zz
z
1 11

1 uMyL
C

e −−
− −=  (19) 

The estimated parameters (the vector b̂ ) are 
determined through the sum’s minimization of the 
square prediction errors 
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where N  is the available data number. An estimation 
algorithm is the following one [2]: 
1) one makes an initial estimation of the coefficients 
of ( )1z−C  using a CMMP type method, and thus it 

results ( );zˆ 1−C  

2) using the previous estimation ( )Ĉ  one calculates 
filtering signals 
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one determines the estimations ( )1zˆ −L  and ( )1zˆ −M  of   

the polynomials ( )1z−L  and ( )1z−M ;  
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4)   hereby a new estimation ( )1zˆ −C  is calculated [3]  
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where V̂  is expressed function of assessments  
( )1zˆ −L  and ( )1zˆ −M  from previous step; 

 ( ) ( ) .zzˆˆ 11 uMyLV −− −=  (24) 

The calculus formula for b̂  is 
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4.1. Parameters estimation of the output error 
model  

Calculus program is presented in Appendix 2.  

Instead of ARX, or iv4, one uses the instruction oe 
with a similar syntax. 
Estimated transfer function is 

4-3-2-1-

321
11

0,248z + 0,004z - 0,373z - 0,877z - 1 
0,616z -0,2204z -0,271z -1,03z)z(ˆ

−−−
−−θ

δ =
p

H  (26) 

The curves )()( tty θ=  and )(ˆ)(ˆ tty θ=  are plotted in 
figure 3.  
 

 
Figure 3: The outputs y  and ŷ  

4.2. Parameters estimation of the ARMAX model 

Calculus program is presented in Appendix 3. Instead 
of instruction oe one uses instruction ARMAX.  
The estimate transfer function is 

.
0,001z - 0,338z  0,314z  1,64z - 1 

0,084z 0,113z -1,247z -1,127z)z(ˆ
4-3-2-1-

321
11

++
+

=
−−−

−−θ
δ p

H  (27) 

The curves )()( tty θ=  and )(ˆ)(ˆ tty θ=  are plotted in 
figure 4. The frequency characteristics [4,5] 
(amplitude - frequency and phase-frequency) are 
plotted in figure 5 (1 – CMMP, 2 – MVI, 3 – 
ARMAX, 4 – frequency characteristics of the leading 
system ( )A ). 
 
  

 
 
 
 
 
 
 
 
 
 

 
Figure 4: The outputs y  and ŷ  
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 Figure 5 

 

Figure 5: Comparative frequency characteristics 

5. LATERAL MOVE ANALYSIS 

Lateral move aircraft dynamics may be described by 
the matriceal equations with non-dimensional 
variables [6] 

 
,
,

DuCxy
BuAxx

+=
+=�

 (28) 

in which  

 [ ] [ ] [ ];,, ϕω=δδ=ϕωωβ= z
T

ed
T

xz
T yux (29) 

β  is the side-slip angle, zω  and xω  are respectively 
the yaw and roll angular velocities, ϕ - the roll angle, 

dδ - the rudder deflection, eδ - the aileron deflection 
( dδ  and eδ  are expressed in degrees). 
For the following coefficients of an heavy aircraft 
[6], which flies at km8=H , with 8.0=M ,  using a 
Matlab program, one obtains matrices A  and B  of 
the linear system (28) while the vectors C  and D  are 
chosen from the second equation (28). 
x  is the state vector, pδ  - elevator deflection. 
Choosing as output variable θ=y  - the pitch angle, it 
results [ ] .0;0100 == DC  
With these values, using a Matlab program, is 
obtained matrix A  and the vectors DCB ,, ; 

[ ] [ ] .0,0100,28000
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The program also calculates the transfer functions 
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H (34) 

The calculated eigenvalues are: 
,i946.00329.02,1 ±−=p  ,5627.03 −=p  .0073.04 −=p   

In fig.6 Dirac impulse’s responses ),(),( ezdz δωδω  
)(),( ezdz δωδω are represented (all the amplitudes are 

expressed in radians). 

 
Figure 6: Dirac impulse’s responses 

 
The program also calculates the matrices associated 
to the discrete mode  
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Figure 7: Step responses of the discrete mode 

 
In fig.7 step responses of the discrete mode (with the 
amplitudes rad0065.0=δd  and rad008.0=δe ) are 
represented. The discrete transfer functions are 
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while the discrete eigenvalues are ;8306.01 =z  
;i2454.08384.03,2 ±=z   .5368.04 =z  

So, the discrete model of the aircraft’s lateral move 
may be described by the following metriceal equation 
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6. PARAMETRIC IDENTIFICATION 
ALGORITM  

Calculus algorithm for a parametric estimator is 
based on the least square method [7].The estimated 
parameters of the Â  model are permanently modified 
with an adaptation mechanism, based on the continue 
measure and the minimization of the error function ê . 
One makes the vector [ ],)()()2()1( NykyyyY T ……=   
the X  matrix and the vectors ee, ˆ  
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The estimated parameters vector b̂  may be obtained 
through minimisation of the square indicator  
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From minimum of J  condition [7], that means 
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where )()( kTxkx ∆  and )()( kTyky ∆ , and T  is the 
sample period and 
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The recurrence relation between )1( +kP ( P  the 
covariance matrix) and )(kP  is [2, 3]  
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where λ  represents the forget factor, and the 
recurrence relation between )1(ˆ +kb  and )(ˆ kb    

 ).1(ˆ)1()1()(ˆ)1(ˆ ++++=+ kekxkPkbkb  (47) 

The discrete transfer functions of  A  are (31) ÷ (34), 
while the discrete transfer functions of  Â  may be 
obtained using a Matlab program 
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Figure 8: Parametric identification scheme  

 
In this program, first matrices A  and B  are formed 
(they contain the coefficients of the four transfer 
functions). The input u  and perturbation e  of the 
leaded system are chosen as random type. For the b̂  
parameters of model Â  estimation one uses ARX 
operator from Matlab, which has the following 
syntax th=ARX(z,nn), where ][ uy=z  - output data 
matrix ( )y  and the input ( )u ; nn ][ ncnbna= -
defines the denominator order ( na ), numerator order 
( nb ) and the model’s delay ( nc ); th returns the 
estimated parameters in theta format (the elements of 
the vector b̂ ) using the least square method. The 
program plots the characteristics )(ty  and )(ˆ ty , 
presented in fig. 9; )(ty  is the output of the leaded 
system A  and )(ˆ ty  - the output of the estimated 

374

Annals of the University of Craiova, Electrical Engineering series, No. 30, 2006_________________________________________________________________________________________________



model ( Â ). In fig. 9 one also presents the 
perturbation [7]. 
In fig.9 the following characteristics families are 
presented: )(ˆ),( tt zz ωω  as responses to random input 
signal dδ  and random perturbation −)(11 te fig.9.a; 

)(ˆ),( tt ϕϕ  as responses to random input signal eδ  and 
random perturbation −)(12 te fig.9.b; )(ˆ),( tt zz ωω  as 
responses to random input signal dδ  and random 
perturbation −)(21 te fig.9.c; )(ˆ),( tt ϕϕ  as responses to 
random input signal dδ  and random perturbation 

−)(22 te fig.9.d. 
 
 

 
 
 
 
 
 
 
 
 
 
 

a. 
 
 

  
 
 
 

 
 
 

 
 
 

b. 
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d. 
       Figure 9: Lateral Parametric identification 
 
The Matlab program used for least square method 
identification is presented in Appendix 4. 

7. APPENDIX 

Appendix 1 

close all;clear all; 
A=[1 -1.6041 0.2776 0.302 0.0352]; 
B=[1.2449 -1.2248 -0.0513 0.0485]; 
tho=poly2th(A,B); u=idinput(300,'rbs'); 
e=randn(300,1); y=idsim([u,e],tho);z=[y,u]; 
th=iv4(z,[4 4 0]); 
%Calculul si reprezentarea grafica a reziduurilor 
ee=resid(z,th); h=figure; plot(ee); 
title('Reziduurile metodei variabilelor instrumentale'); 
xlabel('Timp [s]');grid; 
%Compararea functiilor de transfer obtinute prin 
iv4,arx si metoda de analiza spectrala 
[GS,NSS]=spa(z); [Ga,NSa]=trf(tho);Gi=trf(th); 
h=figure;bodeplot([GS Ga Gi]); 
grid; present(tho); present(th) 

Appendix 2 

close all;clear all; 
F=[1 -1.6041 0.2776 0.302 0.0352]; 
B=[1.2449 -1.2248 -0.0513 0.0485]; 
tho=poly2th(1,B,1,1,F,1); 
u=idinput(100,'rbs');e=randn(100,1); 
y=idsim([u,e],tho);z=[y,u]; th=oe(z,[4 4 0]); 
present(tho); present(th); 
%Reprezentarea grafica a raspunsurilor sistemului 
condus si modelului 
y1=idsim([u e],th); plot(y); 
title('Semnalele de iesire ale sistemului condus si 
modelului'); xlabel('Timp [s]');  
hold on;plot(y1,'r');grid; 

Appendix 3 

close all;clear all; 
A=[1 -1.6041 0.2776 0.302 0.0352]; 

375

Annals of the University of Craiova, Electrical Engineering series, No. 30, 2006_________________________________________________________________________________________________



B=[1.2449 -1.2248 -0.0513 0.0485]; 
tho=poly2th(A,B);u=idinput(300,'rbs'); 
e=randn(300,1);y=idsim([u,e],tho); z=[y,u]; 
th=armax(z,[4 4 0 0]); i=iv4(z,[4 4 1]);  
res=resid(z,th); [GS,NSS]=spa(z); 
[Ga,NSa]=trf(tho); Gi=trf(i);Ge=trf(th) 
bodeplot([GS Ga Ge Gi]); grid;  
present(tho); present(th); 
y1=idsim([u,e],th);h=figure;plot(y); 
grid;hold;plot(y1,'r'); xlabel('Timp [s]'); 

Appendix 4 

close all;clear all; 
%Intrarea 1, iesirea 1 
A=[1 -3.0442 3.5019 -1.7912 0.3403]; 
B=[-1.58 4.2814 -3.9394 1.2182]; 
tho=poly2th(A,B); 
u11=idinput(300,'rbs');e11=randn(300,1); 
y11=idsim([u11,e11],tho); 
z=[y11,u11];th11=arx(z,[4 4 0]);   
yc11=idsim([u11,e11],th11); 
subplot(211);plot(y11); grid; hold; plot(yc11,'r'); 
title('Variatia in timp a iesirilor modelului si 
sistemului condus cu intrarea 1, iesirea 1'); 
subplot(212); plot(e11); grid; title('Perturbatia e11'); 
xlabel('Timp[s]'); 
%Intrarea 1, iesirea 2 
A=[1 -3.0442 3.5019 -1.7912 0.3403]; 
B=[0.039 -0.4514 -0.1676 0.0732]; 
tho=poly2th(A,B); 
u12=idinput(300,'rbs');e12=randn(300,1); 
y12=idsim([u12,e12],tho); 
z=[y12,u12];th12=arx(z,[4 4 0]); 
yc12=idsim([u12,e12],th12); 
h=figure; subplot(211); plot(y12);  
grid; hold; plot(yc12,'r'); 
subplot(212); plot(e12); grid; 
 title('Perturbatia e12'); xlabel('Timp[s]'); 
%Intrarea 2, iesirea 1 
A=[1 -3.0442 3.5019 -1.7912 0.3403]; 
B=[0.3880 -1.0484 1.0157 -0.3406]; 
tho=poly2th(A,B); 
u21=idinput(300,'rbs'); e21=randn(300,1);  
y21=idsim([u21,e21],tho); z=[y21,u21]; 
th21=arx(z,[4 4 0]);yc21=idsim([u21,e21],th21); 
h=figure; subplot(211); plot(y21); grid; 
hold; plot(yc21,'r'); subplot(212);plot(e21); grid; 
title('Perturbatia e21'); xlabel('Timp[s]'); 
%Intrarea 2, iesirea 2 
A=[1 -3.0442 3.5019 -1.7912 0.3403]; 
B=[1.2585 -0.384 -0.9573 0.4866]; 
tho=poly2th(A,B); u22=idinput(300,'rbs');  
e22=randn (300,1); y22=idsim ([u22,e22],tho); 

z=[y22,u22]; th22=arx(z,[4 4 0]);  
yc22=idsim([u22,e22],th22); 
h=figure; subplot (211); plot(y22); grid;  
hold; plot(yc22,'r');  
title('Variatia in timp a iesirilor modelului si 
sistemului condus cu intrarea 2, iesirea 2'); 
subplot(212); plot(e22); grid; 
title('Perturbatia e22');xlabel('Timp[s]'); 

8. CONCLUSIONS 

The identification of the aircraft’s longitudinal move 
is achieved using four methods in Matlab medium. 
One observes that all the methods are very good and 
the transfer functions θ

δ p
H  and θ

δ p
Ĥ  are very near-

by. Is not important if the system, describing 
longitudinal move of an aircraft, is stabile or not. The 
most important thing is that the time characteristics 
( )ty  and ( )tŷ  are almost the same. That may be 

proved by the fact that the coefficients of the transfer 
function θ

δ p
H  are near-by to those of θ

δ p
Ĥ . 

The identification of the aircraft’s lateral move is 
achieved using the method of the least square and a 
program in Matlab medium, which has as most 
representative command the command ARX. One 
may observe that superpose of the system’s outputs 
and leading system’s outputs is almost perfect. 
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