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Abstract −−−− Distance relays are often used for the 
protection of transmission lines. Presently, the 
traditional methods are replaced by relays using 
modern numerical algorithms, which offer improved 
protection sensitivity and selectivity. This paper 
presents a hybrid ANN-fuzzy fault classification 
technique based on a Gaussian RBF neural network 
with a fixed number of hidden units. A pruning strategy 
is used to remove the insignificant units. A case study 
with results for several type faults proves the method’s 
efficiency. 
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pruning strategy,  fault classification . 

1. INTRODUCTION 

The sensitivity and selectivity of protection systems 
are fundamental requirements for a reliable 
protection of the power system against complex, 
unexpected events, such as cascading failures which 
can produce heavy technical damages and economic 
losses. 
Distance relays for the protection of transmission 
lines are used on a large scale for the protection of 
transmission lines. Along with other protection and 
automation devices applied in power systems, 
distance relays have been developed during the last 
decades using at first traditional methods, then 
modern, digital units based on dedicated 
computational algorithms. 
Most algorithms used for fault identification and 
location estimate the impedance between the distance 
relay and the fault location, as the impedance of the 
line is proportional to its length. This is usually done 
by evaluating the system’s state after a fault has 
occurred, using not measured impedance data, but 
voltage and current waveforms measured in the post-
fault state. 
Traditional methods use well-known algorithms such 
as the Fourier transform, the Kalman filter, 
symmetrical components, orthogonal components or 
the model of long lines differential equations. 
Basically, the numerical processing of the voltage 
and current waveforms that define the post-fault state 
it is a pattern recognition problem, which is suitable 

for use with today’s modern computational 
intelligence algorithms. 
The current approaches found in the literature use 
methods such as artificial neural networks (ANNs) 
and fuzzy systems (FSs) [1,2]. 
This paper presents the second stage of a numeric 
simulation of a digital distance protection developed 
by the authors. 
The first stage aimed to estimate the fundamental 
frequency of the voltage and current waveforms by 
their amplitude and phase [3]. A well known neural 
network architecture was used, the Multilayer 
Perceptron (MLP), trained with the error 
backpropagation and RProp algorithms. 
Subsequently, to determine the accurate amplitude 
and phase values, a least mean square (LMS) error 
algorithm was applied fort the values estimated by 
the MLP network. Results were presented for 
different system conditions, fault inception angles 
and fault locations. 
The following stage aims to identify accurately the 
fault type, and it is presented in this paper. 
The third and last stage will determine the fault 
location on the line. 
For the fault type identification, the authors chose a 
hybrid ANN-FS algorithm that uses a special type of 
ANN architecture, the radial basis function (RBF) 
network. The method was tested on a transmission 
line model simulated in the ATP-EMTP program and 
the results prove its efficiency. 

2. THE RADIAL BASIS FUNCTION NEURAL 
NETWORK 

As stated before, the numerical processing of the 
voltage and current waveforms that define the post-
fault state it is a pattern recognition problem, easily 
applicable to ANNs. 
For the fault type identification problem, the authors 
used the radial basis function network (Fig. 1). 
Compared to other ANN types, like the MLP, the 
RBF has a more compact structure and requires less 
computation time.   The RBF network used in this 
approach has three layers: one input layer, a hidden 
layer and an output layer 



346

Figure 1: The RBF network architecture 

 

Each hidden neuron has as net input the vector 
distance between its weight vector w and input p,
multiplied with the bias vector b.
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where N is the size of the input model vector p.
The hidden neuron transfer function is the Gaussian 
function: 
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When a input model is presented, each hidden unit 
will have an output which describes how close is that 
input to the unit’s weights. This means that the 
hidden unit will produce outputs near 0 if the input 
and weight vectors are quite different and outputs 
close to 1 when they are almost identical. 
The use of Gaussian activation functions gives the 
RBF network characteristics similar to fuzzy systems, 
as the outputs of the hidden units combined on the 
inputs of the network’s third layer describe fuzzy 
rules, one rule for each output unit. 
The network architecture is determined through an 
optimization procedure. For the hidden layer, two 
optimization procedures can be applied. The first 
starts with 0 hidden neurons and uses the principle of 
network growing, which adds hidden units whenever 
the performance does not improve [1]. 
The second approach, used in this paper, involves a 
reciprocal method. The algorithm starts with a fixed 

number of hidden neurons, equal with the number of 
training models, and applies a pruning strategy by 
removing insignificant input and hidden units. This is 
done because often a number of inputs and hidden 
neurons have a insignificant contribution to the 
global output and their removal provides a more 
compact topology and reduces computation time. 
 

Figure 2: The transmission line model 

 
Parameter Value 

Length 300 [km] 
Voltage 400 [kV] 

Type aerial 
Phase type 2*450 mm2

Table 1: Transmission line parameters 

 

3. CASE STUDY 

3.1. Description 

The RBF neural network with pruning strategy 
described above was used as a fault classifier. To 
obtain the training data, the model of a transmission 
line was simulated using the ATP/EMTP software 
package [4]. The line model, presented in Fig. 2 and 
Table 1, uses nominal π multipoles with lumped 
parameters, where all magnetic mutual influences are 
taken into account. 
The RBF network was trained with data for different 
fault types and its performances were tested. 
Several fault types were simulated: ag, bc, bcg, abc,
(where a, b, c are the tree phases and g is the ground) 
at 25%, 50% and 75% distance from point A, fault 
resistances of 0, 4, 7 and 10 Ω and 0 degrees 
inception angle. 
One input model has 147 samples, (Fig. 3), 
representing 7 complete periods for the current 
and/or voltage fundamental waves on all three phases 
and the zero sequence current, sampled at a rate of 1 
ms and taken from the post-fault stabilized operating 
condition, obtained with the technique described in 
[3]. There are a total of 39 input models. 
The network performances were tested for all fault 
types and resistances mentioned above, with data 
measured for faults occurring at 33% distance from 
point A.   
As for the neural network architecture, the maximum 
number of hidden neurons was set equal to the inputs 
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model number. Because the outputs are linear, this 
allows network training with zero error. 
For the fault identification problem, there are four 
output units, the a,b,c, phases and g (ground). The 
desired outputs are 1 for faulted phase or 0 for 
unaffected phase. In the generalization stage, the 
following convention applies: faulted phase for 
values greater than 0.5 and unaffected phase for 
outputs greater than 0.5. 
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Figure 3: Input data for the ag fault type 

 

3.2. Results 

 
The fist goal was to establish the standard deviation 
value for which the RBF network identifies fault 
types with maximum precision, i.e. values closer to 1 
and 0. As performance parameter, the average 
difference between the desired and the obtained 
outputs, for the entire test data set, was used. 
As the Fig. 4 plot shows, a standard deviation value 
of 1 was too narrow for a feasible approximation, but 
for the range from 2 to 30, the results in the 
generalization stage are much better and comparable, 
with a minimum of  0.0246 (standard deviation  5) 
and not exceeding 0.08 (standard deviation  18). The 
results presented in the following stage were obtained 
with a RBF network trained with a standard deviation  
value of 5. 
The results obtained for the test data set are presented 
in Tables 2-5 for different fault types and resistances. 
Subsequently, a pruning strategy was applied to 
reduce the network topology. At first, a reduction of 
the hidden neurons number was attempted based on 
their global output value. As seen in Table 6, a 
number of maximum two neurons could be pruned, 
with outputs no larger than 1. The average error of 
the pruned network was 0.0386. 
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Figure 4: The optimal standard deviation value for 
the RBF network 
 

Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω
a 1.0041 1.0038 1.0035 1.0033 
b -0.0044 -0.0041 -0.0038 -0.0036 
c -0.0044 -0.0041 -0.0038 -0.0036 
g 1.0044 1.0041 1.0038 1.0036 

Table 2: Results for the ag fault 

 
Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω

a -0.0003 -0.0019 -0.0033 -0.0048 
b 0.9963 0.9980 0.9996 1.0013 
c 0.9963 0.9980 0.9996 1.0013 
g 1.0155 1.0134 1.0122 1.0113 

Table 3: Results for the bcg fault 

 
Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω

a -0.0090 -0.0070 -0.0444 -0.1360 
b 1.0090 1.0070 1.0443 1.1357 
c 1.0090 1.0070 1.0443 1.1357 
g -0.0097 -0.0070 -0.0444 -0.1360 

Table 4: Results for the bc fault 

 
Rf =0Ω

a 1.0031 
b 1.0080 
c 1.0080 
g -0.0134 

Table 5: Results for the abc fault 
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Pruning 
threshold 

Pruned 
neurons 

Average 
error 

0 0 0.02456 
0.1 2 0.03861 
1 2 0.03861 

1.1 3 0.27533 

Table 6: The maximum number of pruned neurons 
 

Using a similar procedure, insignificant input layer 
weights were pruned. A number of maximum 1237 
input weights (22.7%) could be pruned without 
affecting the recognition process. This number 
corresponds to a threshold of 0.17. The results for the 
pruned network are presented in Tables 7-11. 
 

Pruning 
threshold 

No. of 
pruned 
input 

weights 

Average 
error 

0.01 232 0.038462 
0.05 549 0.078508 
0.1 786 0.082385 

0.11 847 0.068133 
0.12 902 0.124621 
0.13 945 0.085623 
0.14 1014 0.093077 
0.15 1087 0.085987 
0.17 1237 0.101636 
0.19 1354 0.10995 

Table 7: The maximum number of pruned input 
weights 

 Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω
a 1.0045 0.9706 0.9476 0.9275 
b -0.0049 0.0287 0.0515 0.0714 
c -0.0049 0.0287 0.0515 0.0714 
g 1.0055 0.9719 0.9491 0.9291 

Table 8: Results for the ag fault, pruned network 

 Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω
a -0.0878 -0.0346 0.0025 0.0356 
b 1.0866 1.0316 0.9932 0.9589 
c 1.0866 1.0316 0.9932 0.9589 
g 0.5406 0.8832 1.1175 1.3215 

Table 9: Results for the bcg fault, pruned network 

 Rf =0Ω Rf =4Ω Rf =7Ω Rf =10Ω
a -0.0136 0.0390 0.0805 0.2669 
b 1.0100 0.9612 0.9198 0.7337 
c 1.0100 0.9612 0.9198 0.7337 
g -0.0899 0.0393 0.0805 0.2669 

Table 10: Results for the bc fault, pruned network 

 Rf =0Ω
a 1.0175 
b 0.9900 
c 0.9900 
g 0.1243 

Table 11: Results for the abc fault, pruned network 

Increasing the pruning threshold over 0.17 resulted in 
output values above 1.5 or below -0.5 and recognition 
errors, without increasing substantially the number of 
pruned weights.  

4. CONCLUSIONS 

A RBF neural network fault classifier is proposed in 
this paper, as the second stage in the development of 
a numeric simulation of a digital distance protection.  
The RBF network is trained using sampled 
fundamental current and voltage waveforms from the 
post-fault stabilized state and the zero sequence 
current. A pruning strategy is applied to remove 
insignificant hidden units and input weights. The 
fault classifier identifies properly all types of faults, 
for different fault distances and resistances 
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