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Abstract −−−− The paper presents a new version of the 
modified nodal method for analysis of the circuits with 
widely separated time scales. The key idea is to use 
multiple time variables, which enable signals with 
widely separated rates of variation to be represented 
efficiently. The differential algebraic equations (DAE) 
describing the RF-IC circuits are transformed in multi-
time partial differential equations (MPDE). In order to 
solve MPDE we use the associated resistive discrete 
equivalent circuits (companion circuits) for the dynamic 
circuit elements. The algorithm to formulate and to 
solve the dynamic modified nodal equations was 
implemented in a computing program, which 
constitutes a useful tool for steady-state analysis of a 
very large class of nonlinear analog circuits. 

Keywords: nonlinear analog circuit, multi-tone signal, 
multi-time partial differential equation. 

1. INTRODUCTION 

A typical RF-IC application has carrier frequencies in 
the GHz-range with modulating signals in the kHz-
range. Such signals are called multirate signals, and 
they contain “components” that vary at two or more 
widely separated rates. These systems are typically 
difficult to analyze using traditional numerical 
integration algorithms, such as those in programs like 
SPICE [1]. The difficulty comes from the widely 
disparate rates: following fast-varying signal 
components long enough to obtain information about 
the slowly-varying ones is computationally expensive, 
and can also be inaccurate. So finding the steady-state 
by the brute-force method is, in this case, time-
consuming [1, 2]. 
Many multirate signals, especially from circuits, can be 
represented efficiently as functions of two or more time 
variables, i.e., as multivariate functions. If a circuit is 
described with differential-algebraic equations (DAE), 
using multivariate functions for the unknowns naturally 
leads to a partial differential equation (PDE) form, 
called Multirate Partial Differential Equations 
(MPDE). If we apply time-domain numerical methods 
to solve the MPDE directly for the multivariate forms 
of the unknowns, we are able to analyze the 
combination of strong nonlinearities and multirate 
signals. 

The Modified Nodal Equations (MNE) in dynamic 
behavior and the output equation for lumped nonlinear 
analog circuits have the following form [11-13]: 
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where: [ ]ttt
1)( mn ,t ivx −= - is the independent variable 

vector, with 0x initial condition; GM , are square 

matrices ( ) ( )mnmn +−×+− 11 ; [ ]ttt ejy ,= - is the 
input vector; F- represents the resistive terms; B and 
L are selector matrices, with entries (−1, 0 or 1), and 
the superscript “t” denotes the transpose. 

If for the nonlinear inductors (nonlinear capacitors) 
the magnetic fluxes (electrical charges) are considered 
as the independent variables, then the matrix M is 
independent of x. The circuits exhibiting multirate 
behavior can be efficiently represented using multiple 
time variables. If there are p multivariate forms of 
change, p time-scales are used. We denote the 
multivariate forms of x(t) and b(t) by ( )ptt ,...,ˆ 1x and 

(((( ))))pt,...,tˆ
1b .
The MPDE corresponding to (1) is: 
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A relation between MPDE and MNE is proved to be in 
[1]. According to the theorem 1 from [1] the solutions 
of MNE are available on the “diagonal” lines a long the 
MPDE multivariate solutions. 
The modified nodal equations (MNEs) are very easy to 
formulate and to implement into a program [4,7,8,9]. 
Replacing each capacitor and inductor (magnetic 
coupled or not) by a discrete resistive circuit model 
associated with an implicit numerical integration 
algorithm, efficiency in numerical computing of the 
associated MPDE is obtained. The characteristics of the 
nonlinear circuit elements are approximated by 
piecewise-linear continuous curves [5-10]. 
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By using the backward differential formula of high 
order, the efficiency is achieved without 
compromising accuracy. 

2. NUMERICAL METHOD TO SOLVE MPDE  

We consider the two-rate case. The MPDE (2) 
becomes: 
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with the periodic boundary conditions (BCs) 
( ) ( )212211 t,tx̂Tt,Ttx̂ =++ . We take a uniform grid 

)}({ j,it of size (n1+1)x(p2+1) on the rectangle [0, 
m1T1]x[0,T2] (Fig.1), where )()( 21 j__i t,ti,jt ==== , with 

11 )1( hit i −−−−====−−−− , t2_j = (i-2)T2+(j-1)h2,

11,11 21 ++++====++++==== p,jn,i ; h1=m1T1/n1 = T1/p1, and 
h2=T2/p2. Consider that the slow components of ( )tb
and ( )tx depend on t1 and the fast components of 
( )tb and ( )tx depend on t2.

Fig. 1: A uniform grid { ( )j,it } of 
size ( ) ( )11 21 +×+ pn .

According to the backward differential formula (BDF), 
which approximates into the range of any prescribed 
accuracy, the present value x� (tq)= qx� at qtt = in terms 

of xq=x(tq) and p values pqqq x,...,x,x −−−−−−−−−−−− 21 , qx� has 
the following expression: 
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where pa,...,a,a 10 are constants, and 1−−= qq tth is 
the present time step size. 
 

For the first periods T1 and T2 (corresponding to the 
grid of size (p1+1)x(p2+1)), we assume that the BCs are 

0.01ˆ =)( ,jx , 11 2 += p,j and 0.01,ˆ =)(ix , i =1,2; and 

)()( 1ˆ11ˆ 2 +=+ i,p,i xx , 12 p,i ==== ; on the row t1 = 0, 
and on the column t2 = 0 respectively. We start the 
integration process on the row 2 from the 
point )()22( 2221 __ ,tt,t ==== , with t1_2=h1, t2_2=h2 (in 
respect of the fast time t2) from the column 2 to the 
column p2+1 and so on till we arrive in the point t (2, 
p2+1), with t1_2=h1, t2_p2+1=p2h2=T2. After that, we 
integrate one time step h1 in respect of the slow time t1

–assigning to x̂ (2, 1) the value of x̂ (2, p2+1) – and 
then we start again the integration process on the row 3 
(in respect of the fast time t2) from the column 2 to the 
column p2+1, and so on until we arrive in the point 

)()11( 121121 21 ++++++++====++++++++ _p_p ,tt,ppt , with 11111_1 Thpt p ==+

and 2122112_2 Tpphpt p ==+ .

Remark 1. Before passing to the integration for the 
next grid (each grid having the size (p1+1)x(p2+1)), 
starting from the point t (p1+2,2)=(t1_p1+2,t2_2), with 
t1_p1+2=(p1+1)h1, t2_2=p1T2+h2, we must consider the 
following boundary conditions: 

1)1()12( 211 ++=+ p,pˆ,pˆ xx ; =+ )1( 1 i,px̂

)( 11ˆ 21 ++= ,pi-px , 13 1 += p,i on the column t2 = 0, 

and x̂ (p1+1,j), 12 2 ++++==== p,j on the row t1 = T1. We 
continue integrating with the step h1 in respect of the 
slow time t1 from the point ( )11 21 ++ p,pt to the point 
( )221 ,pt + (Fig. 1). 

 

Proceeding in this way for the other grids we shall 
integrate the MPDE until the point 

)()11( 111121 21 ++++++++====++++++++ _p_n t,t,pnt , with 1111 1
Tmt n_ ====++++ ,

and 2112 2
Tnt p_ ====++++ . At each time t (i,j) we have to 

solve a nonlinear algebraic equation system. For this, 
we can use the Newton-Raphson algorithm or other 
efficient numerical iteration algorithms [1-7, 13]. 
 

The discrete resistive circuit equations, associated with 
the BDF of the first order ( 10 =a and 11 −=a ) when 
the characteristics of the nonlinear elements are 
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approximated by piecewise-linear continuous curves, 
at time moment t (i,j) and at the (k+1)th iteration of the 
Newton-Raphson algorithm, corresponding to the 
modified nodal analysis method, have the following 
form: 
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where: (((( ))))
(((( ))))(((( ))))k

j,in,dn s11 −−−−−−−−G is the incremental node-
conductance matrix corresponding to the n–1 
independent nodes; (((( ))))

(((( ))))(((( ))))k
j,im,dn s1−−−−B is an mn ×− )1(

matrix containing the elements –1, 0, +1 and the 
current gains of the CCCSs; (((( ))))

(((( ))))(((( ))))k
j,in,dm s1−−−−A represents 

a mx(n-1) matrix containing the elements –1, 0, +1 and 
voltage gains of the VCVSs; (((( ))))

(((( ))))(((( ))))k
j,im,dm sR is a mm×

matrix having the entries made up of: the transfer 
resistances of the CCVSs; the incremental resistances 
of the discrete models of the current-controlled 
dynamic circuit elements and the incremental 
resistances of the current-controlled nonlinear 
resistors; (((( ))))

(((( ))))1
1
++++
−−−−
k

j,inv is node-voltage vector 
corresponding to the n–1 independent nodes (at the 
(k+1)th iteration and the time moment t (i,j); (((( ))))

(((( ))))1++++k
j,imi

represents the current vector corresponding to the non-
NA-compatible circuit branches at the (k+1)th iteration 
and the time moment (((( ))))j,it . The vectors (((( ))))

(((( ))))k
j,in,sci 1−−−−

and (((( ))))
(((( ))))k

j,ime represent the contributions of the excitation 
sources (independent current and voltage sources), of 
the sources corresponding to the approximations of 
nonlinear resistors and the initial values of capacitor 
voltages and inductor currents which are determined 
from previous time steps (((( ))))j,it 1−−−− of the slow time t1

and (((( ))))1−−−−j,it of the fast time t2.
For the case when the circuit contains flux-controlled 
nonlinear inductors and charge-controlled nonlinear 
capacitors, we must consider as independent variables 
also the flux vector (((( ))))

(((( ))))1++++k
j,iLϕϕϕϕ and the charge vector 

(((( ))))
(((( ))))1++++k

j,iCq , respectively [5, 9]. 
 

In the following we present the contributions of some 
dynamic circuit elements to the modified nodal 
equation (5). 

The voltage-controlled nonlinear capacitor ( )CC uq̂
The nonlinear characteristic ( )CC uq̂ is approximated 
by piecewise linear continuous curve: 
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It results that the contribution of the v.c. nonlinear 
capacitor to MNE (5) is: 
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The current-controlled nonlinear inductor ( )LL iϕ̂
The nonlinear characteristic ( )LL iϕ̂ is approximated by 
piecewise linear continuous curve: 

 ( ) ( )sisL LLdL φ+⋅=ϕ �  ( ) ( )siisi LLL
+− ≤≤ , (8) 
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and the contribution of this element to MNE (5) is: 
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3. EXAMPLE  

We consider the simple neural network in Fig. 2. The 
input signals have the following expressions:  

(((( )))) (((( ))))
(((( )))) (((( )))) V. 00110.12sin4

,V2/9910.92sin4
9

34

8
1

ttv

ttv

π

ππ

====

++++====

Fig. 2: Simple neural network. 
 

The state vector for the circuit represented in Fig. 2 
has the following structure:  

State_vector:={UC11,IL16,IL9,IL23,IL2,UC6, 
UC13,UC18,UC20,UC25,UC27}; 

Eliminating the state variables elm_stvar: = {UC8_n, 
UC14_n, IL3_n, IL9_n, IL15_n, IL21_n}, and taking h1=2us 
and h2 = 0.05us, we obtain the reduced-order state 
equations: 

 
Rem_st_eqs := {20.50*UC25_n-.5000*UC25_o1-20.00*UC25_o2 

= .2000e-1*UC19_n-.9682e-1*UC25_n+.5682e-1*UC20_n- 
.1000*Gdu24(s)*UC25_n-.1000*ju24(s)+.2000e-1*UC7_n, 

20.50*UC7_n-.5000*UC7_o1-20.00*UC7_o2 = 
-.9682e-1*UC7_n+.2000e-1*UC13_n+.5682e-1*e1-.1000* 

Gdu6(s)*UC7_n-.1000*ju6(s)+.2000e-1*UC25_n, 

20.50*UC20_n-.5000*UC20_o1-20.00*UC20_o2 = 
.4001*e1-.7982*UC20_n-.2439e-3*IL21_o1-.9756e-2* 

IL21_o2+.5682e-2*UC25_n+.1763e-3*UC8_o1+.7052e-2* 
UC8_o2+.9392e-2*UC14_o1+.3756*UC14_o2+.1067e-3* 

UC19_n-.1832e-3*IL15_o2-.8600e-7*IL9_o1-.3440e-5*IL9_o2- 
.4580e-5*IL15_o1+.2003e-5*UC13_n, 

20.50*UC13_n-.5000*UC13_o1-20.00*UC13_o2 = -.9680e-1* 
UC13_n+.2000e-1*UC19_n+.2504e-4*UC14_o1+.1002e-2* 

UC14_o2+.2002e-4*UC20_n-.4886e-6*IL15_o2-.6506e-6*IL9_o1- 
.2603e-4*IL9_o2-.1222e-7*IL15_o1+.1067e-2*e1+.1334e-2* 
UC8_o1+.5335e-1*UC8_o2-.1000*Gdu12(s)*UC13_n-.1000* 

ju12(s)+.2000e-1*UC7_n, 

20.50*UC19_n-.5000*UC19_o1-20.00*UC19_o2 = -.9680e-1* 
UC19_n+.2000e-1*UC25_n+.2504e-4*UC8_o1+.1002e-2* 

UC8_o2+.1334e-2*UC14_o1+.5335e-1*UC14_o2+.1067e-2* 
UC20_n-.2603e-4*IL15_o2-.1222e-7*IL9_o1-.4886e-6*IL9_o2- 

.6506e-6*IL15_o1+.2002e-4*e1+.2000e-1*UC13_n- 
.1000*Gdu18(s)*UC19_n-.1000*ju18(s)}. 

 
In these equations appear as the symbols and the 
parameters associated with the nonlinear circuit 
elements. 
The slow component period is T1=1000 ns, and the fast 
one is T2= 1ns. To visualize the steady state by 
classical transient analysis, using a time step h=0.01 

us, we need 106 samples to represent one period of the 
slow component. For a two-time representation of the 
signals a uniform grid of size 20×500 = 104 is enough. 
The variations of the output voltages v6, v12, v18, and 
v24, are shown in Fig. 3 in one-time variable 
representation when we use our computing program 
[2] and in Fig. 4 are represented the same variations 
when we use the Spice program. 
 

Fig. 3: One-time variation of the output voltage v6
using our program. 

 
For a bi-variate input signal vi(t) with the expression: 

V)102sin()102sin(8),( 2
6

1
3

21 ttttvi ππ==== ,

the output voltage v6 is represented in two-time 
variable in Fig. 5, and in one-time variable in Fig. 6. 
 

Fig. 4: One-time variation of the output voltage v6
using Spice program. 
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Fig. 5: Two-time variation of capacitor voltage 
vC7=vRdu6.

Fig. 6: One-time variation of capacitor voltage 
vC7=vRdu6.

Representing the simulation results in two-time form is 
useful for visualizing the waveforms with widely 
separated time scales. 

4. CONCLUSIONS 

An efficient numerical approach for analyzing 
strongly nonlinear multirate circuits has been 
presented. The procedure uses multiple time variables 
to describe multirate behavior, leading to multi-time 
partial differential equations. The state equation 
formulation in a partially symbolic reduced form is 
used in order to obtain a MPDE form with a 
minimum number of independent variables. A new 

way to compute the appropriate BCs of the MPDE in 
order to accelerate the reaching of the periodic steady 
state is proposed. Combining this procedure with the 
state variable approach, in which only the symbols of 
the parameters corresponding to the nonlinear circuit 
elements are considered, a significant efficiency in 
circuit design and an improvement of the accuracy in 
the numerical calculations are obtained. 
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