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Abstract −−−− The paper presents an electro-thermal 
numerical model which can be used for the modelling 
and optimization of dismountable contacts of 
high currents by neglecting the skin effect (by taking 
into account the very large ratio, near to 10, of the 
dimensions of cross-section of the current lead for 
which the skin effect is very weak). The 
numerical model is obtained by the coupling of the 
electrokinetic field problem with the thermal field 
problem. The coupling is carried out by the source term 
of the differential equation which describes the thermal 
field. The source term depends on the electric 
conductivity which varies according to the temperature. 
The model allows the calculation of the distribution in 
the space of the electric quantities (electric potential, 
the gradient of potential and the current density) and of 
the thermal quantities (the temperature, 
the temperature gradient, the Joule losses and heat 
flow). In the contact zone, it appears a heating larger 
than that of the current lead caused by the contact 
resistance. The additional heating, caused by the 
contact resistance, is simulated by an additional source 
injected on the surface of contact. The contact 
resistance can be calculated using different models. For 
an imposed limiting value of the temperature, using the 
model, one can determine the optimal geometry of 
dismountable contact. 

Keywords: numerical modeling, dismountable 
contacts, coupled problems, finite volumes, 
optimization. 

1. INTRODUCTION 

The optimization of the dismountable contacts (Figure 
1) for high currents (1250 – 6000 A), used in the 
design of electrical equipment in metal envelope, is 
possible by solution of a coupled  problem, electrical 
and thermal. The dismountable contact of a system of 
bus bars has a non-uniform distribution  of current 
density (figure 2) on the cross-section of the current 
leads. The non-uniform distribution of the current 
density implies a non-uniform distribution of source 
term in the thermal conduction equation. 
The distribution of the electric quantities can be 
obtained by solving of Laplace equation for electric 
potential. The solution of this equation depends on 
the temperature through electric conductivity. In its 
turn the electric conductivity influences the source 
term in the thermal conduction equation and thus the 
value and the distribution of the temperature 

of electrical contact. 

Figure 1: Typical dismountable contacts 

 

Figure 2: Current density distribution 

 
Obtaining the correct distributions for the electric 
quantities (potential, intensity of the electric field, 
current density and losses by Joule effect) and 
thermic (the temperature, the gradient of temperature, 
density of the heat flow, the convection flow on the 
contact surface, etc) is possible by the coupling of the 
two problems, electric and thermal. 
The numerical model allows the calculation of the 
constriction resistance (caused by the variation of the 
cross section of the current lead). 

2. MATHEMATICAL MODEL 

The mathematical model used for obtaining 
the numerical model has two components, the 
electrical model and the thermal model, coupled by the 
electric conductivity, which varies according to the 
temperature, )(Tσ and the source term 

22 )()()( JTETTS ρσ == .

2.1. Electrical Model 

The electrical model is governed by a 
2D model described by the Laplace equation for the 
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electric potential: 
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where electric conductivity and thus the electrical 
resistance vary according to the temperature as: 

 ( ))20(1)( 20 −+= TT Rαρρ (2) 

By knowing the electric potential, one can obtain the 
intensity of the electric field )(VgradE −=

�
and the 

current density EJ
��

σ= (law of electric conduction).  
The Joule losses (by the unit of volume) which 
represents the source term in the thermal conduction 
equation are calculated by the following relation: 
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2.2. Thermal Model 

The thermal model is governed by the thermal 
conduction equation in steady state: 
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where: λ - the thermal conductivity which is 
considered constant in the temperature range of 
the current lead  (bellow C 200 o ). 

3. DOMAIN OF ANALYSIS AND BOUNDARY 
CONDITIONS 

One considers a simplified analysis domain which 
is presented in figures 3 and 4 where one neglects the 
existence of the fastening bolts. 
The boundary conditions of the electrical model are 
presented in figure 3. In the general case, one knows 
the current I carrying the current lead and which 
determines a voltage drop 21 VV − . In this model, one 
initializes a voltage drop for which one calculates the 
current which corresponds to it (at each iteration) and 
then in a iteration loop one modifies the voltage drop 
to obtain the desired value of the current. 
The current which passes any section of the current 
lead  is calculated by the following relation: 
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where: n� - the normal at S which is the cross-section of the 
current lead. 
The two assembled bars are considered sufficiently 
long to set, on the boundaries AB and CD  (figure 4) 
the boundary conditions of Neumann homogeneous 
type.  
On the other borders, one sets boundary conditions of 
the convection type, with a global heat exchange 

coefficient h (by convection and radiation, 20=h
W/m2K) to the environment having the temperature 
∞T [3]. 

Figure 3: Analysis domain and boundary conditions 
for electrical model 

 

Figure 4: Analysis domain and boundary conditions 
for thermal model 

4. NUMERICAL ALGORITHM 

The numerical model is obtained by the discretization 
of the differential equations (1) and (4) by using the 
finite volumes method [1]. 
The coupled model is of alternate type [2] where the 
equations are solved separately and coupling is 
realized by the transfer of the data of one problem to 
the other. The two problems (electric and thermal) are 
integrated in the same source code and thus use the 
same mesh. The numerical algorithm is shown in 
figure 5. 
The criterion of convergence of the coupled model was 
selected the value of the current, through the current 
lead, calculated using the relation (5). One used 
a mesh having 4293 nodes (with m002.0=∆=∆ yx ). 
The imposed error, for the electric model, 
was 710−=Eε and for thermal model 510−=Tε . The 

error imposed for the coupled model was 410−=Cε .
The convergence of the coupled model is very fast, as 
we see in table 1 (for 100=cl mm). 
The numerical validation of the model was made using 
a simplified analysis domain, by using a current 
lead with variable cross-section [3]. 
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The numerical validation of the results of this 
simplified model was made by using the software 
QuickField for the electrical model and the software 
Mirage (FEMM) for the thermal model. One can see a 
very good agreement between our results and the 
results obtained using the Mirage software. 
 

Figure  5: Simplified diagram of numerical 
algorithm 

 

Iterations
(coupled 
model) 

Iterations 
(electrical 
 model) 

Iterations  
(thermal model) 

Current
[A] 

1 388104 171986 1405.05
2 61053 45277 1262.67
3 26832 1 1264.66
4 1 1 1264.65

Table 1: Convergence of the iterative process for 
coupled model and current. 

5. NUMERICAL RESULTS 

The figures 6, 7, 8, 9 and 10 present some numerical 
results. The dimensions of the analysis domain are 
those of figure 6. The principal difficulty, in modelling 
and simulation the temperature distribution of a 
dismountable contact, is to take into account the 
resistance of contact (especially disturbance resistance 
because the resistance of constriction can be calculated 
by the model). 
The optimization of the contact design supposes to 
determine the value of dimension cl such that the 
maximum temperature, in the contact region, remains 

lower than the acceptable limiting value allowed 
by standards. 
 

Figure 6: Potential distribution (in mV )

Figure 7: Electrical field distribution in the contact 
region (in  mV / ) 

 

Figure 8: Current density distribution in the contact 
region (in 2/ mmA )

Figure 9: Temperature distribution (in Co )
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Figure 10: Temperature gradient distribution (in 
Co /m) 

 
For the case presented in table 1 ( 100=cl mm and 

65.1264=I A) the calculated losses by Joule effect 
are 28.89 W, while calculated ohmic losses are 24.91 
W. The difference is due to the constriction resistance 
of the current lead.

Figure 11: Maximum temperature of contact versus 
length of contact (for kW 01.1=cS ).  

6. CONTACT RESISTANCE MODEL 

The source term determined by the contact 
resistance is calculated by the following relation: 
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where: x∆ and y∆ - the dimensions of the control 
volume, nc - the number of mesh points in the contact 
region (see fig. 17), H - the bus bar height (see fig. 
12). 
The contact resistance cR is calculated with the 
following relation [5]: 
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where: ρ - the electric resistivity, n - the number of 

contact points, 2)2(8 dAa = - the total area of contact 

(see fig. 18) and ssR (in 2mΩ ) - the specific resistance 

of oxide film of contact point. 
The radius of contact surface a is calculated from 
Holm’s relation: 
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The relation (7) does not take into account the 
variation of contact resistance with temperature. To 
take it into account one can use the relation [5]: 
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where: Rα - the variation coefficient of electric 
resistivity with temperature. 
 

Figure 12: The mesh in contact region 

 

Figure 13: Physical model of contact region 

The contact resistance model was implemented in 
numerical model of dismountable contact. For a 
constant value of the current ( AI 2275= ), varying the 
tightening force of the screws one can get the variation 
of the maximum temperature versus tightening force 
(see fig. 14) 
A simplified model for electrical contact resistance 
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between two bars was given by Greenwood. In the 
absence of oxide film of contact point the contact 
resistance a unit apparent contact aria is a function of 
surface asperities and bulk resistance [7]: 
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where: ρ is the bulk resistivity of the contacting 
bodies, n is the number of contacting asperities per 
unit area, a is the average contacting radius of 
asperities and l is the average center-to-center 
distance between of contact asperities. The quantities 
a and  l can be related to the yield strength ( ysσ ), 
n and contact pressure ( p ). Finally the contact 
resistance can be expressed as an explicit function of 
apparent contact pressure p , bulk resistance ρ and 
the yield strength ysσ of material. After further 
introducing the temperature dependency of  ysσ the 
contact resistance becomes an explicit function of 
temperature pressure and bulk resistivity for a given 
contact interface: 

 ),,( ρTpfRc = (11) 

The summit of two surfaces in an electric joint that 
stay in metallic or quasimetallic contact form the so 
called a-spots [6]. The current lines bundle together 
to pass through the a-spots and cause the constriction 
resistance sR . The number n , the shape and  the area 
of a-apots are generally stochastic and depend on 
material parameters of the conductor material, on the 
topography of the joint surfaces and on the joint 
force. For simplicity it is often assumed that the a-
spots are cicular. Looking at one single circular a-
spot its constriction resistance sR1 depends on its 
radius a and on resistivity ρ of the conductor 
material. Under the assumption that the bulk material 
above and under the a-spot is infinite in volume the 
value of the constriction resistance can be calculated 
by means of Holm’s ellipsoid model. 
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If a single a-spot is completely covered with a thin 
film of the resistivity ssρ and the thickness s its film 
resistance ssR1 is given by 
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with ssσ as tunnel resistivity that is the resistance of 
the film across one cm2.

The total resistance of an a-spot refered to as contact 

resistance results in the sum of the constriction 
resistance sR1 and the film resistance ssR1 .
The constriction resistance and the film resistance of 
electric joint for high current application are ruled by 
the electric flow through n parallel a-spots with a 
distance of  ijs from the thi to the thj a-spot. 
In case that a large number of a-spots exists in close 
vicinity the electric flow through each a-spot depends 
on the electric flow through its neighbours. The 
constriction resistance of the joint is given by the 
resistance of the parallel connexion of  n a-spots and 
an additional term that describes the interaction of the 
current flows [6]: 
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where: a is the mean radius of  all a-spots. 
The number n and the mean radius a of the a-spots 
can then be determined from the topography of the 
joint surface and from the elastic and plastic 
deformation of the summits under the joint force. 
 

Figure 14: Maximum temperature in contact area 
versus tightening force (for AI 2275= )

The results presented in figure 14 are obtained with the 
model (7). 

7. CONCLUSIONS 

The elaborated model can be used for the optimization 
of the current leads of high currents with variable 
cross-section, such as the dismountable contacts. The 
model allows the calculation of the constriction 
resistance of current lead, the constriction resistance of 
contact region and takes into account the specific 
resistance of oxide film of contact point which is an 
important component of the contact resistance. 
The results presented in figure 11 shows that it is 
possible to optimize the geometry and to reduce the 
mass of the contact. Numerical model elaborated 
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allows determination of the maximum temperature in 
the contact area as a function of the tightening force of 
the dismountable contact (see figure14). However an 
experimental validation of the numerical results is 
absolutely necessary. 
An improvement of the model is possible taking into 
account the skin effect and the presence of the 
tightening screws. 
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