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Abstract – This paper is a brief presentation of some 
numerical methods usable for simulation of 
electromagnetic shields behavior. The presentation is 
focused on those methods that are appropriate for high 
frequency shields. Some simulation results are also 
presented in the final part of the paper. 
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1. INTRODUCTION 

Numerical methods have been applied to many of 
electrical engineering problems over the years. By 
reason of the high computer development these 
methods are tailored for software implementation.  
The purpose of all numerical methods used in 
electromagnetism is to find approximate solutions to 
Maxwell’s equations, or of equations derived from 
them, that satisfy given boundary and initial 
conditions. Formulating an electromagnetic problem 
means to specifying the properties that a solution 
must have, properties that can be specified as local 
(differential) or global (integral) properties, both in 
the studied space and at its boundaries. This means 
that we must solve a differential or an integral 
equation to specific conditions. A way to find the 
solution is to try to guess a solution and then verify if 
it has indeed the required properties. If it does, the 
problem is solved, if not the next step is to improve 
the guess until its properties meet the specifications, 
at least approximately, in other words, to optimize 
the guess. To implement this algorithm on a 
computer, it must formulated in such a way that it 
converges accurately, quickly, and reliably in a wide 
variety of electromagnetic scenarios. The basis for 
such a computer solution is the classical 
mathematical technique of approximating a function 
(the unknown solution) by a sum of known functions 
also called expansion functions or basis functions 
(eg. Fourier series).  
In fact, all numerical methods used in 
electromagnetism employ this common strategy: the 
unknown solution is expanded in terms of known 
expansion functions with unknown coefficients. The 
coefficients are then determined such that the sum 
meets, as closely as possible, all the criteria stated in 
the formulation of the problem. 

The difference between numerical techniques resides 
essentially in the following aspects: the 
electromagnetic quantity that is being approximated, 
the expansion functions that are used to approximate 
the unknown solution, the strategy employed to 
determine the coefficients of the expansion functions. 

2. CATEGORIES OF NUMERICAL METHODS 

Numerical methods can be placed in two main 
categories: frequency domain and time domain 
methods. This distinction reflects the difference in 
our perception of space and time. In the formal sense, 
frequency domain formulations are time domain 
formulations in which the time dimension has been 
subject to a Fourier transform, thus reducing the 
number of independent variables by one. 
Another way of categorizing both the numerical 
techniques and the computer tools based on them 
relies on the number of independent space variables 
upon which the field and source functions depend. In 
all categories we can again distinguish between 
frequency domain and time domain formulations. 
1D Methods – These are methods for solving 
problems where the field and source functions 
depend on one space dimension only. Typical 
applications are transmission line problems, uniform 
plane wave propagation, and spherically or 
cylindrically symmetrical problems with only radial 
dependence 
2D Methods – These are methods for solving 
problems where the field and source functions 
depend on two space dimensions. Typical 
applications are cross-section problems in 
transmission lines and waveguides, waveguide 
structures, coaxial TEM problems, and spherical 
problems depending only on radius and azimuth or 
radius and elevation. 
2.5D Methods – These are methods for solving 
problems where the fields depend on three space 
dimensions, while their sources (the currents) are 
mainly confined planes with two space dimensions. 
Typical examples are planar structures.  
3D Methods – These are methods for solving 
problems where both the field and source functions 
depend on three space dimensions. This category 
comprises all volumic full-wave general-purpose 
formulations. The most prominent 3D frequency 
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domain methods are finite element, finite difference, 
and method of moments formulations. Among the 3D 
time domain methods, the FDTD, FIT, and TLM 
formulations dominate. Hybrid formulations 
combining two or more different numerical 
techniques have been developed and implemented for 
particular applications. 

3. DESCRIPTION OF SOME METHODS 

3.1 Finite difference time domain method (FDTD) 

FDTD is a popular computational technique. It is 
considered easy to understand and easy to implement 
in software. Since it is a time-domain method, 
solutions can cover a wide frequency range with a 
single simulation run. Maxwell's equations (in partial 
differential form) are modified to central-difference 
equations, discretized, and implemented in software. 
The equations are solved in a leapfrog manner: the 
electric field is solved at a given instant in time, then 
the magnetic field is solved at the next instant in 
time, and the process is repeated over and over again.  
The basic FDTD space grid (Fig.1) and time-stepping 
algorithm trace back to a seminal 1966 paper by 
Kane Yee in IEEE Transactions on Antennas and 
Propagation[1].  
In order to use FDTD a computational domain must 
be established. The computational domain is simply 
the physical region over which the simulation will be 
performed. The E and H fields are determined at 
every point in space within that computational 
domain. The material of each cell within the 
computational domain must be specified by its 
permeability, permittivity, and conductivity. 
Once the computational domain and the grid 
materials are established, a source is specified. The 
source can be an impinging plane wave, a current on 
a wire, or an applied electric field, depending on the 
application. Since the E and H fields are determined 
directly, the output of the simulation is usually the E 
or H field at a point or a series of points within the 
computational domain. The simulation evolves the E 
and H fields forward in time. Processing may be done 

on the E and H fields returned by the simulation. 
Data processing may also occur while the simulation 
is ongoing. 

3.1.1. Strength points of FDTD method 
FDTD is a versatile modelling technique used to 
solve Maxwell's equations. It is intuitive, so users can 
easily understand how to use it and know what to 
expect from a given model. 
FDTD is a time-domain technique, and when a 
broadband pulse (such as a Gaussian pulse) is used as 
the source, then the response of the system over a 
wide range of frequencies can be obtained with a 
single simulation. This is useful in applications where 
resonant frequencies are not exactly known, or 
anytime that a broadband result is desired. 
Since FDTD calculates the E and H fields 
everywhere in the computational domain as they 
evolve in time, it lends itself to providing animated 
displays of the electromagnetic field movement 
through the model. This type of display is useful in 
understanding what is going on in the model, and to 
help ensure that the model is working correctly.  
The FDTD technique allows the user to specify the 
material at all points within the computational 
domain. A wide variety of linear and nonlinear 
dielectric and magnetic materials can be naturally 
and easily modelled. 
FDTD allows the effects of apertures to be 
determined directly. Shielding effects can be found, 
and the fields both inside and outside a structure can 
be found directly or indirectly.  
FDTD uses the E and H fields directly. Since 
shielding modelling applications are interested in the 
E and H fields, it is convenient that no conversions 
must be made after the simulation has run to get these 
values.  

3.1.2. Weak points of FDTD method 
Since FDTD requires that the entire computational 
domain be girded, and the grid spatial discretization 
must be sufficiently fine to resolve both the smallest 
electromagnetic wavelength and the smallest 
geometrical feature in the model, very large 
computational domains can be developed, which 
results in very long processing times. Models with 
long, thin features, (like wires) are difficult to model 
in FDTD because of the excessively large 
computational domain required. 
FDTD finds the E/H fields directly everywhere in the 
computational domain. If the field values at some 
distance are desired, it is likely that this distance will 
force the computational domain to be excessively 
large. Far-field extensions are available for FDTD, 
but require some amount of post-processing. 
Since FDTD simulations calculate the E and H fields 
at all points within the computational domain, the 
computational domain must be finite to permit its 

Fig.1:  Three-dimensional Yee cell showing the 
staggered positions of the field component samples. 
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residence in the computer memory. In many cases 
this is achieved by inserting artificial boundaries into 
the simulation space. Care must be taken to minimize 
errors introduced by such boundaries. There are a 
number of available highly effective absorbing 
boundary conditions (ABCs) to simulate an infinite 
unbounded computational domain. Most modern 
FDTD implementations instead use a special 
absorbing "material", called a perfectly matched layer 
(PML) [2] to implement absorbing boundaries. 
Because FDTD is solved by propagating the fields 
forward in the time domain, the electromagnetic time 
response of the medium must be modelled explicitly. 
For an arbitrary response, this involves a 
computationally expensive time convolution, 
although in most cases the time response of the 
medium can be adequately and simply modelled 
using either the recursive convolution (RC) 
technique, the auxiliary differential equation (ADE) 
technique, or the Z-transform technique.  

3.2 METHOD OF MOMENTS (MoM) 

The Method of moments (MOM) or boundary 
element method (BEM) [3] is a numerical 
computational method of solving linear partial 
differential equations which have been formulated as 
integral equations (i.e. in boundary integral form). 
Conceptually, it works by constructing a "mesh" over 
the modelled surface. MoM is applicable to problems 
for which Green's functions can be calculated. These 
usually involve fields in linear homogeneous media; 
e.g. problems involving currents on metallic and 
dielectric structures and radiation in free space. The 
structures must be electrically small and are typically 
made of metals, although special extensions allow the 
inclusion of dielectrics, either as layered dielectrics 
or as finite sized shapes. 

3.2.1 Strength points of the MoM 

An advantage of the MoM is that it is a "source 
method" meaning that only the structure in question 
is discretized, not free space as with "field methods". 
Because it requires calculating only boundary values, 
rather than values throughout the space defined by a 
partial differential equation, it is significantly more 
efficient in terms of computational resources for 
problems where there is a small surface/volume ratio.  

3.2.2. Weak points of the MoM  
The validity of the assumptions introduced into MoM 
type formulations are established through empirical 
means. The codes incorporating these formulations 
are run for a large number of test cases with the 
results compared to experimental observation.  
The fact that studied structures must be electrically 
small and made of metal places considerable 
restrictions on the range and generality of problems 

to which boundary elements can usefully be applied. 
For many problems boundary element methods are 
significantly less efficient than volume-discretization 
methods (FDTD).  
Boundary element formulations typically give rise to 
fully populated matrices. This means that the storage 
requirements and computational time will tend to 
grow according to the square of the problem size. By 
contrast, finite element matrices are typically banded 
(elements are only locally connected) and the storage 
requirements for the system matrices typically grow 
quite linearly with the problem size. Compression 
techniques can be used to ameliorate these problems, 
though at the cost of added complexity and with a 
success-rate that depends heavily on the nature of the 
problem being solved and the geometry involved. 
Nonlinearities can be included in the formulation, 
although they will generally introduce volume 
integrals which then require the volume to be 
discretized before solution can be attempted, 
removing one of the most often cited advantages of 
BEM. 

4. AN EXAMPLE OF SHIELD OPTIMISATION 
USING NUMERICAL TECHNICS 

For a easier validation of results we have chosen to 
optimise a well known shield type. The Salisbury 
Screen, Fig.2, is a resonant absorber, that consists of 
a resistive sheet placed an odd multiple of ¼ 
wavelengths in front of a metal (conducting) wall 
usually separated by an air gap. A material with 
higher permittivity can replace the air gap. This 
decreases the required gap thickness at the expense of 
bandwidth. In terms of transmission line theory, the 
quarter wavelength transmission line transforms the 
short circuit at the metal into an open circuit at the 
resistive sheet. The effective impedance of the 
structure is the sheet resistance. If the sheet resistance 
is 377 ohms/square (i.e. the impedance of air), then 
good impedance matching occurs. 

Fig.2: Salisbury Screen 
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Using the FDTD technique we have obtained results 
that respect strictly the theory and experimental 
observations. 
 The optimum thickness of the resistive sheet (case of 
impedance matching) is given by: 

 
σ0

1
Z

d = (1) 

where σ is the conductivity of the sheet and Z0 is the 
air impedance. 
The optimum gap thickness is: 

 
f

cH
44

==
λ

(2) 

For a resonant frequency of 0.93 GHz the optimum 
thickness of the air gap is 80 mm, the optimum 
thickness of the resistive sheet at a conductivity σ =
13.26 S/m is d = 0.2 mm. The simulation result using 
FDTD method can be seen in Fig.3 as reflectivity 
coefficient S11 vs frequency. 

In case of replacing the air gap whit a material with 
higher permittivity the relation for optimum gap 
thickness becomes: 

 
f

cH
εε

λ
44

== (3) 

For the same frequency f = 0.93 GHz and a dielectric 
gap with a permittivity ε = 3.5 the optimum gap 
thickness decrees to 43mm but whit a cost in 
bandwidth as is clearly seen in simulation results 
presented in Fig.4 as reflectivity coefficient S11 vs 
frequency. 
The bandwidth of the Salisbury Screen can be 
improved by adding more quarter wavelength-spaced 
layers. This structure, represented in Fig.5, is called a 
Jaumann device, and is analogous to the anti-
reflective coatings found in visible optics, which is 
comprised of stacks if high and low refractive index 
material to reduce reflections.  
Beyond two layers the problem cannot be analytically 
optimised and iterative optimisation routines are 

required to maximize bandwidth while minimizing 
reflectivity and thickness. 
 

The optimization of a 4 resistive sheet becomes very 
difficult due to the number of variables. 
Figure 6 shows the effect of increased number of 
layers on the bandwidth. The results obtained using a 
FDTD tool, represents the reflection coefficient of 
three different Jaumann devices, with 2, 3 and 4 
layers , compared with a Salisbury screen. 
 

Fig. 4:  Reflectivity coefficient S11 for a Salisbury 
screen whit a dielectric gap with ε = 3.5 

Fig. 5:  Jaumann device 

Fig.3:  Reflectivity coefficient S11 for a Salisbury 
screen 

Fig. 6:  Reflectivity coefficient S11 for a Jaumann 
device with 1, 2, 3 and 4 layers 
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Using an iterative optimization, conductivities for the 
Jaumann layers were obtained as follows: 

for 2 layers : 5.81 =σ 5.332 =σ

for 3 layers : 5.51 =σ 5.122 =σ 373 =σ

for 4 layers 9.21 =σ 8.72 =σ 5.173 =σ
364 =σ (all conductivities are expressed in S/m) 

5. CONCLUSIONS 

Because of the high complexity of electromagnetic 
shields optimisation problems, we used numerical 
techniques (FDTD) to simulate shields. For 
validation, we have chosen to optimize some well 
known shields. The obtained results were the same 
with those obtained by manual calculation. This 
allows us to use numerical techniques for 
optimisation of more complex shields such as 
composite honeycomb materials.  
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