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Abstract - A new approach to the solution of nonlinear 
programming problems is suggested. The main salient 
feature of the approach is a network interpretation of 
nonlinear functions. Convergence rate conditions are 
considered for sequential conventional numerical dynamic 
programming algorithm for equality and inequality 
constrains. An important advantage of the technique 
proposed is that it is particularly suitable for parallel 
processing, and the total computational time can be 
reduced in a factor proportional to the number of time 
intervals provided that the quantity of the processor for 
parallel processing is enough. 
 
Keywords: dynamic programming, decomposition, 
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processing. 
 
1. INTRODUCTION 
 
It is well-known that a class of dynamical systems 
without control modeled by the deterministic nonlinear 
difference equation often exhibits chaotic oscillations 
[1]: 
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where nx and ny represent the population densities of 
preys and predator at the n-th generation, respectively, 
A and B rates positive constant representing the growth 
rates of the prey and predator respectively; C is a 
positive constant  representing the interconnected rate 
between two species; H, E constant control [2]. 
A lot of optimization problems can be formulated by a 
deterministic finite stage dynamic programming model. 
It is more frequent that such a dynamic programming 
formulation does not have a closed form solution. For 
dynamic programming problems where the state 
variables are of the high dimension the conventional 

numerical dynamic programming algorithm is in fact 
applicable owing to the well known differently in 
relation to the “curse of dimensionality”. 
Let S={I, U} a finite oriented network without loops, I, 
U are sets of nodes and arcs, respectively  a nod i∈I
has a finite number of inputs and outputs. The input 
signals (flows) of the nods i are summed up, and the 
copies of the sum are passed to every output of the 
node. A nod j∈I is called a source of the networks S if 
one of its input signal is not an output one of the other 
nodes. A node t∈I is called a sink if one of the output 
signal does not enter the other nodes of the network [3]. 
Let S, T are sets of sources and sinks, respectively. An 
ark (i,j)∈U transfers the signal zi from the node i∈I to 
the node j∈I in the form fij(zi), fij(z) is a characteristic 
of he arc. Signals zt, t∈T are single – valued functions 
with respect to the variables xj, j∈I. If the 
characteristics fij(z), (i,j)∈U are smooth function, then 
the problem  
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The network S is called locally controllable on the flow 
z if for any collection ),( 0Ttt ∈= ηη the exists such a 

collection ),( Jjj ∈= ξξ that   

 0),()()( TtOxx tii ∈++=+ θθηϕθξϕ .
The criterion of local controllability is the condition 
rank ||)/,( 00 TxITX = . Connect with this notion the 
main constructions of the approach: 
- a set ||||, 0supsup TIII =⊂ , is  called a local support 

of S on z, if )/,()(,0det sup0 xITXxPPP ==≠ ;

• - a pair ),( supIx of feasible input x and support Isup is 
input; 
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- a support input is nondegenerate if 

sup
*

* , Jjdxd jjj ∈≤≤ ;

- the vector 1
sup00 )/,()'),(()('' −⋅−=∈== PxItXTtxUxUU t

is called a vector of potentials. 
A network S*={I*,U*} is conjugate to St if it is 
constructed by altering the current: 
• the sources of S* are the sinks of St;
• the sinks of S* are the sources of St;
• the arc (i,j)∈U* is obtained from the arc (i,j)∈Ut by 
altering current; 
• the nodes IIi =∈ * of the networks S* act as the 
nodes of ξS .
A unified description of the networks S, S* is achieved 
using the function 
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tν is input signal of  S*, ),( Iii ∈= ψψ are the 
corresponding output signals of nods 

,0,1, *** ==∈ itttt bbXi if ,0,, * =∈≠ itbTtti if  
., TtTi ∈∉

For optimality of the feasible input x0 it is necessary 
that there exist a support Isup that along {x*,Isup} and the 
accompanying flow z0 an coflow 0ψ the condition 

),,(max),,( 00000 xzHxzH ψψ = , *
* dxd <<  is 

fulfilled. The key role in this result belongs to the 
support. 
 
2. THE SECOND – ORDER OPTIMALITY   
 CONDITIONS 
 
Let x0 be an optimal input,  
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The totality },,{ 0*
* III is called a structure of optimal 

input x0. The algorithm consists of the main part and the 
finishing procedure [5].   
The main part of the algorithm reveals the structure of 
the optimal input and prepares the initial guess for the 
finishing procedure which constructs x0 to a required 
accuracy. 
With appropriate initial support input ),( supIx on which 

the conditions for 0>α sufficiently small 
 ;),(),( ** Ijdx jjj ∈−≥≤ αµαµψ

;),(),( ** Ijdx jjj ∈+≥−≤ αµαµψ (11) 
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0,0)( →→ ααµ are fulfilled, one can determine the 
structure of the optimal input and construct x0 using the 
finishing procedure directly. The finishing procedure 
consists in solving the system of nonlinear equations 
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under variables sup, IIjx fj ∪∈ , by the Newton 
method using the initial guess 

., supIIjx jjj ∪∈=χ Let 0χ be a solution of the 
system (12) for which  
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Then the 0χ is a local optimal input.  

A network },{)(* UIzSS ll ==α is called α
approximation of S on *lz if 
• The characteristics of its arcs )/( i

l
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• The deviation between the functions   

,,,);/();( *
* Ujizfzf ijiji

l
ijiij ∈≤≤+ αηαηη α (15) 

in the given norm does not exceed α . A first-order 
support problem is as follows: 
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Note that the linear approximation (16) of the problem 
(7) does not use artificial norm conditions. At 
minimization of complicated functions, serious 
difficulties arise due to the optimal conditions 
equalities 0=iψ . In such a situation, to improve the 
algorithm, the principle of accumulation of linear 
approximations of that conditions is suggested. The 
realization of this principle leads use to a second –order 
support problem which is obtained by adding to (16) 
for the linear constraints 
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3. THE AVERAGING METHOD 
 
Consider the following external problem with quickly 
changing parameters [7]: 

,)()/,(max,)(' * UtBxttAxtxc +=→
•

µ (18) 
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,,, RURgRx mn ∈∈∈ rank ,nmH <= 0>µ is 
the small parameter, ),,()1,( ττ tAtA =+ ,1|),(| <µtU

Tt∈ is called an s-admissible control if along the 
corresponding trajectory .),,( Tttxs ∈µ The asymptotic 
equality −=− ),(')((||),(|| *0**

* µµµ txccqtHx

)()),(' **
* µµ ctxc =− is fulfilled, where ),( *0 µtx is the 

optimal trajectory [6]. The suggested scheme of 
construction of s-optimal control is based on the 
expansion of the fundamental matrix 
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It consists of the following steps 
1. From base problem 
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the solution of the conjugate system  
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3. Find the number ,,,1, Ijsitij ∈= by the extension of 

the function ),( *
0 µtHx into Taylor’ series in terms of 

µ up to S order. This results to a systems of linear 
equations with respect to variables 

siIjtij ,1,, sup =∈ . The matrix of the system is 
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siIjTt ,1,, sup =∈∈ is an optimal control of 
problem (19). 
Consider the following problem with quickly changing 
input device: 
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The scheme of solution of problem (20) is analogues 
with the above one. 
A general problem  

 ,)/,()/,(max,)(' * UttbxttAxtxc µµ +=→
•

(21) 
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is solved using the synthesis of the above methods. 
 
4. MULTICRITERIA OPTIMIZATION 
 
In order to describe the extension of the generalized 
time interval iteration algorithm (TIIA) dealing with 
multicriteria dynamic programming problems some 
notations introduced:   the set of Pareto control 
sequences and that of Pareto trajectories obtained by 
the fi-th subproblem through fi-th subproblem in the i-
th iteration will be described by ),,( 21 jjiU and 

),,( 21 jjiX respectively. New the problem formulation 
is the same as that expended by 

 min,),(
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except that the functions 1,0, −= NkVk a vector 
valued functions of l –dimension, this new problem 
will be denoted by VDOCP, for VDOCP, the relevant 
nonlinear programming problem introduced in the 
generalized TIIA to be described in the following by 
VNLP and the operation to find the Pareto solution of 
the problems will be described by minV . The procedure 
of the generalized TIIA for the VDCOP is described by  
1. The procedure of the generalized algorithm for 
DCOP ((22)-(25)). 
2. At the i-th iteration, where the update of the Pareto 
solution set pair is (U(i),X(i)) solve the following s – 
stage subproblem. 
Theorem 1. For the model VDOCP suppose: 
1. The hypotheses H1 and H2 hold. 
2. The set ASP (admissible set pairs) is compact. 

1. 3. A type of constraint qualification for Kuhn-Tacher 
theorem is satisfied for any solution of VNLP(i,j) and 
any .),( MXU ∈
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Theorem 2. For the model VDOCP suppose: 
1. All the components of the vector valued function kV
are strictly convex. 
2. All the components of functions Shk are linear, 

those of Sgk are concave. 
3. The hypothesis H2 holds. 
4. The condition: 
• The function I is pseudoconvex, hk both 
quasiconvex and quasiconcative; 
• gk quasiconcative for 1,0 −= Nk ;
• the set ASP },),(,),(|,{ RASPSUXUIXU ∈∈≤ εε

hold. 
Then the sequence (U(i),X(i)) generated by the 
algorithm converge to the Pareto optimal solution set 
pair. 
Remark:
H1. For any admissible solution pair (U’,X’), if 
U(i)=U’, X(i)=X’ then each of the subproblem 
NLP(i,j), lj ,0= has S unique solution. The optimal 
control problem formalized by (22)-(25) has also 
unique optimal trajectory. 
H2. For any 2,0, −=∈ NkXxk summing the n
functions njuxT kk

kj ,1),,( = there exist m functions 
which can be assumed to be those corresponding to 

mj ,1= without lows of generality, the matrix 
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in of full rank over the constraint set. 
 
5. CONCLUSION 

The most part of suggested algorithms was realized 
problems (18), (20), (21) a considered as canonical 
optimal control problems for the averaging method. 
They are of great importance in optimization of long-
time processes. The generalized TIIA provides a 
powerful tool to tackle large scal dynamic 
programming problems since it reduces the computer 
storage thoroughly.  

The hypothesis witch ensure the convergence of the 
algorithm are rather mild which extend the range of 
applications to include those optimal control problems 
of practical importance. A distinct feature of the 
algorithm is that it is flexible in choosing the structure 
of the decomposition which fits the structure of the 
problem in hand and hence speed up the convergence, 
moreover, it is easy to implement on parallel processors 
with a suitable choice of architecture.  
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