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Abstract −−−− This paper presents a new ON-LINE 
parametric identification and discrete optimal command 
algorithm for mono or multivariable linear systems. The 
method may be applied with good result to the automatic 
command of the flying object movement. 
The simulation results obtained with this real time 
algorithm, with parametric identification of an air-air 
rocket’s movement in vertical plain regarding to target’s 
line are presented. 
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1. INTRODUCTION 

Because of fast flying parameters’ modify for the 
modern aircraft and rockets, performing real time 
identification and optimal or adaptive command 
algorithms have to be made. The authors of this paper 
have made such an algorithm. 
First of all, an off-line parametric identification is 
made, without command, for obtaining the initial 
values of these parameters for the on-line 
identification process. 
Using the leading system )A( and model’s outputs, a 
discrete optimal command law is projected, using a 
quality quadratic criterion, which assures the 
convergence of the difference between leading system 
and model’s outputs. The model’s parameters, 
obtained by the ON-LINE identification, are used for 
he command law calculus. 
For the algorithm validation one uses as example the 
automatic command of the A ’s movement in vertical 
plain; time characteristics, representing evolution of 
state variables of A and their estimate, are plotted. 
These variables’ stabilization and the convergence of 
the errors iii xxe ˆ−= happen in maximum 2 seconds. 
The proposed algorithm produces very good results in 
the case of longitudinal and lateral movement’s 
stabilization for transport and fights aircrafts 

2. CONTINOUS AND DISCRETE MODELS FOR   

The leading system (the movement of A ) may be 
described by the input – output equations with general  
forms 
 ,BuAxx +=� (1) 

 ,cxy = (2) 
where x is the state vector )1( ×n , −u the command 
vector )1( ×m , −A the system matrix )( nn× ,
−B matrix )( mm× , −y output vector )1( ×p ,
−C measurement system matrix .),( npnp ≤× The 

estimated model is described by equations 
 ,ˆˆˆˆ uBxAx +=� (3) 
 ,ˆˆˆ xCy = (4) 
where x̂ is the state x ’s estimation, ŷ - output y ’s 

estimation, BA ˆ,ˆ and −= CĈ estimate matrices. 
The discrete variants of equations systems (1), (2), and 
(3), (4) are, respectively 
 ),()()1( kuBkxAkx dd +=+ (5) 
 );()( kxCky d= (6) 

 ),(ˆ)(ˆˆ)1(ˆ kuBkxAkx dd +=+ (7) 
 );(ˆˆ)(ˆ kxCky d= (8) 
matrices ddd CBA ,,  and ddd CBA ˆ,ˆ,ˆ are discrete variants 

of matrices CBA ,, and CBA ˆ,ˆ,ˆ .
Another description form for the estimated system A
( A dynamics estimation) [1] is 
 )1(ˆ)(ˆ)1(ˆ)1(ˆ +++=+ kekbkxky T (9) 

or 
 ),1(ˆ)1(ˆ)(ˆ)1(ˆ +++=+ kekzkbky T (10) 
where ),1(ˆ)1()1( +−+=+ kykyke

[ ],)(ˆ)(ˆ)(ˆ)(ˆ
1 kkbkkb TTT βα= (11) 

with  
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[ ],)()()(ˆ)1( kUkukYkz TTT =+ (13) 
with  
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[ ].1)1(),1(ˆ ×−× mmUnpY
If pm = , then equation (10) becomes 

 );()(ˆ)()(ˆ)(ˆ)(ˆ)1(ˆ 1 kUkkukbkYkky TT β++α=+ (15) 
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if pm ≠ , then )(ˆ kTβ matrix cannot be multiplied wit 
)(kU vector because of their dimensions. That’s why, 

in equation (15) the last term is expressed for each 
concrete case (function of m and p values). So that, 
in the case presented below (rocket’s movement in 
vertical plain) 1,4 == mn and equation (15) becomes 

 ),()(ˆ)(ˆ)(ˆ)1(ˆ 1 kukbkYkky T +α=+ (16) 
where  
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1̂b is a )1( ×p vector, ŷ is a )1( ×p vector and 
.)11()( ×−ku

For command law ( ))(ku obtaining, one chooses the 
performance indicator 

[ ] [ ] ),()()1(ˆ)1()1(ˆ)1( kRukukykyQkykyJ TT ++−++−+= (18) 
where )1( +ky is the imposed output vector while 

)( ppQ × and )( mmR × are symmetric and positive 
definite matrices, −R nonsingular matrix; )1( +ky has 
the form (17). The optimal command is obtained from 

optimum condition ,0
)( 
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[ ],)(ˆ)(ˆ)1()( kYkkyGku Tα−+= (19) 
for Gm ;1= has the expression 

 [ ] .)(ˆ)(ˆ)(ˆ
1

1

11 QkbkbQkbRG TT −
+= (20) 

Q and R matrices may be calculated using ALGLX 
algorithm proposed by the authors of this paper or 
other algorithms [3], [4], [5]. 

3. A ’S PARAMETERS IDENTIFICATION 

First of all the off – line system A ’s parameters 
identification is made, using, for example, the least 
square method (LSM), resulting the parameters 
vector )0(ˆˆ

0 bb = ; in this moment the system’s 
command is uncoupled, therefore the system is an 
open loop one. )(ˆ ty is then computed and the vectors 

)0(ˆ
0̂ YY = and )0(0 UU = are memorized. Also, the 

covariance matrix 0P is memorized at the end of 
identification ( ))0(0 PP = . Then, matrices dddd BABA ˆ,ˆ,,
are computed and with these state vectors x and x̂
are computed; these vectors (at the end of 
identification) are memorized. 
For simulation of time varying of A ’s parameters, 
the parameters of A are modified (for example with 
5%) and with the new coefficients dA and dB
matrices are computed. 
The loop is then closed (one adds )(ku command) 
and Q′ and R matrices are computed with ALGLX 

algorithm in rapport with dÂ and dB̂ matrices and 

after that the matrix ( ) ++ ′= CQCQ T is calculated. 

G matrix from (20) is obtained with 1̂b extracted 
from ).(ˆ kb Then command )(ku is computed with 
(19). 
The vectors )1( +kx , )1(ˆ +kx , )1( +ky and )1(ˆ +ky are 
calculated; vectors )1(ˆ +kY and )1( +kU are 
memorized and the error )1(ˆ)1()1(ˆ +−+=+ kykyke is 
computed. 
The actualization of covariance matrix is made with 
formula [1] 
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and, with this, 

 ),1(ˆ)1(ˆ)1()(ˆ)1(ˆ ++++=+ kekzkPkbkb (22) 

where )1(ˆ +kz has the form (13). 
State variables )(txi and )(ˆ txi are plotted. 

4. IDENTIFICATION AND OPTIMAL 
COMMAND OF THE ROCKET’S MOVEMENT 

For the identification and discrete optimal command 
algorithm’s validation, present above, a simulation 
program was made in the MATLAB medium. 
Considering model of A ’s movement in rapport with 
equal signal line [6], [7], with state vector 

[ ] yuyyxT ;, δ=θα∆−= �� and y� are lateral 
deviation and lateral deviation angular velocity, 
respectively, α∆ - incidence angle variation, θ� -
pitch angular velocity . 
With flying parameters’ values from [8], for the 40th 
second of flight, following step by step the algorithm, 
one obtained successively the results 

[ ]0.0410-0.4610-0.4610-0.0410-1.01 -4.056.06-4.02 -3-3-3-3
0 ⋅⋅⋅⋅=Tb

[ ]0.05-0.130.060.006-0.81-3.465.50-3.84ˆ
0 =Tb

;

0000.811-
1003.469
0105.503-
0013.845

 ˆ;

0001.015-
1004.053
0106.062-
0014.023
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and b vector of the system with optimal command 
[ ]-5-3-3-5 104-100.43-100.43-103.97-0.96-3.855.75-3.82 ⋅⋅⋅⋅=Tb

Also one obtained 1,1067.0 == RQ .
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In fig.1 state variables )(ˆ),( txtx ii and )(tδ are 
presented ( )(txi with blue and )(ˆ txi with red). 

Fig.1 – Time varying of ii xx ˆ, and δ

5. CONCLUSIONS 

The paper presents an ON – LINE parametric 
identification and discrete optimal command 
algorithm for linear systems. For validation, it is used 
to automatic command of a rocket’s movement in 
vertical plain with respect to equal signal line, which 
materializes target line. A simulation program based 
to presented algorithm was made in Matlab/Simulink. 
The obtained graphic plots express time evolution of 
the state variables )(ˆ),( txtx ii and the evolution of 
command )(tδ .
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