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Abstract −−−− The paper presents a liniarized model of 
rocket’s vertical plain movement, in rapport with equal 
signal line, represented by target line direction, linear 
state estimator (observer) projection using a new reduced 
order algorithm and gain matrix of optimal command 
law after estimated state vector projection. The present 
paper’s authors have obtained the observer projection 
algorithm and command law projection algorithm. The 
results of numeric simulation including state variables 
and estimated state variables’ dynamics are presented. 
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1. INTRODUCTION 

The subject of this paper is the optimal control of 
lateral deviation of a rocket in rapport with equal 
signal line. A model for a rocket’s movement is used 
and it expresses the rocket’s movement around mass 
center, model that is liniarized around a reference 
trajectory (PD – A – T direction, PD is leading point, 
A – rocket, T – fixed or mobile target). State vector of 
the dynamic model is composed of lateral deviation in 
rapport with equal signal line, lateral deviation angular 
velocity, incidence angle and angular pitch velocity. 
The output is lateral deviation. Using a minimum 
number of transducers (velocity transducer and/or 
incidence angle or overload factor transducer) a linear 
reduced order state estimator (observer) is projected, 
which estimates state vector’s components. 
Optimal command law has to cancel the deviation and 
relative lateral speed of the rocket in rapport with 
target line, and to stabilize the incidence angle and 
pitch angular velocity. 
A new algorithm for gain matrix of the optimal 
command law projection and a new algorithm for 
reduced order observer projection are used. 
PC simulations validate theoretical results; calculus 
programs based on the two algorithms and state 
variables variation for a set of flying parameters (10th 
flight second) are also presented. 

2. ROCKET’S MOVEMENT MODEL 

The rocket’s movement in vertical plain is described 
by the following equations system [1] 
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where ϑ is the trajectory slope ( ,α−θ=ϑ θ is the 
pitch angle, α - the incidence angle, V - flying 
velocity, m - the rocket’s mass, TF - the thrust force, 

xc and yc - aerodynamic drag and lift coefficients 

( ) Vyy Tcc ,α= α - time constant of the flying object 
(rocket A ) ), 
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S - aerodynamic reference surface of A , ρ - air 
density. 
Expressing equation (1) in α and θ variables, one 
obtains 

 ϑ−α+α=θ cos
V
gTTT VVV �� (4) 

or in a liniarized form in rapport with reference 
( )000 ,, ϑαθ
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αθ∆=θ ~,�� - perturbation. 
A ’s movement around mass center in vertical plain 
is described by equation [1] 

 ,δ=α+θ+θ δαθ mmmJ z
���
� (6) 

where zJ is the inertia moment of  A in rapport with 
horizontal axis, 

θ�m and αm - dynamic damp and 
static stabilization moment coefficients, δm -
command moment coefficient. With α+ϑ=θ and 
equation (1), equation (6) leads to linear equation 
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ξδ=δ∆ , - damp coefficient and 0ω - proper 
frequency of the twist movement in vertical plain; 
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Equation (6) is equivalent with the following one 
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which, taking into account equation (8) 
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leads to 

 .01 δ+α∆−θ−=θ δkaa ��� (11) 

Considering that rocket A is leaded using a three 
points method (co-linearity PD – A -T), target line 
(PD - T) being the equal signal line, lateral deviation 
in rapport with this is [1] 

 ,TVfVy +ϑ=� (12) 

where Tf is a perturbation due target line rotation, 
which tends to deviate A from equal signal line and 
gives A a normal acceleration .Tw By equation (12) 
derivation and taking into account equation (1), one 
obtains 

 ;cos, 0ϑ−+=+α∆= gfVfVww
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Tw is an equivalent perturbation (normal acceleration 
to equal signal line direction). 
For above equations coefficients calculus one may 
use calculus equations [2] 
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where 4321 ,,, dddd are read from diagrams or graphic 
characteristics for different rockets variants. Thus, 
for an Oerlicon rocket at 10th flight second 
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Choosing the state vector [ ],θα∆= ��yyxT the 
system formed by equations (6), (9) and (13) 
becomes 
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If the input is δ=u and perturbation vector is 
[ ],~

T
T
p wu α= system (15) becomes 

 ,pEuBuAxx ++=� (16) 

where 
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3. LINEAR OBSERVER PROJECTION 

Let’s consider the linear observer described by 
equations [3], [4] 

 ,HyGuFzzM ++=� (18) 

 zQyPzx ,ˆ += (19) 

with ( ) ( ),1ˆ,1 ×× nxrz ( ) ( ),, rrFrrM ×× ( ) 0det =M and 
,)( qnMrank −≤ ( ),mrG × ( ) ,qErank = ( ),prH ×

( ),rnP × ),( pnQ × ;pq ≤ let’s consider the observer’s 
error 

 ,Nxze −= (20) 

where N is a ( )rr × matrix. 
By equation (20) derivation and substituting x� of 
form (16), Cxy = , z� of form (18) and imposing that 
all coefficients of ux, and pu being null, that means 

 ,MNBG = (21) 

 ,FNMNAHC −= (22) 

 ,0=MNE  (23)        

one obtains the error’s equation 

 .FeeM =� (24) 

The error ( )xx −ˆ may be replaced function of e .
Indeed, taking into account equations (19) and (20), 
one obtains 

 Pexx =−ˆ (25) 

if 

 .IQCPN =+ (26) 

With E of form 

 [ ] ( )( ) ( )( ),,, 2121 qqnEqpnEEEE ×−×−= (27) 

equation (23) is equivalent with equation system 
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Condition (22) is equivalent wit equations system 
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it results [ ],21 HHH T = with 
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Matrices P and Q may be obtained from condition 
(26), equivalent with following equations 

 [ ],,0 2131 QQQPP T === (33) 
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one results 

 ,, 12422 CCPCQ ++ −== (35) 

1Q and 2P are solution of system (33). G matrix is 
calculated with (21). 
Using the presented algorithm with parameters’ 

values for the 10th flight second and ,
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The algorithm proposed in this paper has the 
following steps: 
1. One makes coordinates transformation xTx = for 
system (16), where T is a non-singular 
transformation; it results matrices 

 [ ],0, 11
mIBTBATTA === −− (37) 

where T is chosen having form [ ],~TBT = with T~

randomly chosen so that .)( nTrank =

2. Gain matrix K is calculated for the optimal 
control of system ( )BA, so that closed loop system 
with matrix KBAG −= be stable [5]. 
3. K and P are partionated [6] 
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The following matrices are calculated 
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For the studied case (one input and one output) it 
results 
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4. Matrices Q and Q are calculated 

 [ ],KBPPAAPQ T −+−= (42) 

 .)( 11 −−= TQTQ T (43) 

5. One solves Riccati equation in rapport with 
unknown P

.01 =+−+ − QPBPBRPAPA TT (44) 

6. One calculates gain matrix 

 PBRK T1−= (45) 

7. One calculates optimal command law 

 .x̂Ku −= (46) 

With the presented algorithm one obtains matrices 
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Fig.1 - Matlab /Simulink model of the rocket’s 
movement 

Using Matlab/Simulink model of the rocket’s 
movement from fig.1 and a simulation program, one 
calculates ( )txi and ( )txiˆ (curves ix of blue color, ix̂
of red color), represented in fig.2. 

Fig.2 – Time varying of ii xx ˆ,

The obtained results with these algorithms are 
superior to those obtained with algorithms from [7], 
[8], [9] from the point of view of precision. 

4. CONCLUSIONS 

The paper presents an optimal command system of 
lateral deviation of a rocket in rapport with equal 
signal line. A ’s model is a liniarized model which 
expresses the dynamic of the main variables: lateral 
deviation and deviation velocity in rapport with equal 
signal line, incidence angle variation and pitch 
angular velocity. Because the lateral deviation is 
difficult to measure, one measures incidence angle 
and pitch angular velocity and estimates the full state 
vector using a linear state estimator (observer).  

A new projection algorithm of such an observer is 
presented. The system’s command is chosen to be 
optimal, based on usage of a quality quadratic 
criterion. For gain matrix’s projection of the optimal 
command, a new algorithm is presented. This 
contains weight matrices, from quality quadratic 
criterion, calculus after coordinates transformations 
have been made. With obtained matrices, a Riccati 
equation is solved and after that gain matrix of the 
optimal command is calculated. Simulation program 
calculates state observer, gain matrix and time 
functions, which expresses state variables dynamics 
of the system and estimated state variables dynamics. 
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