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Abstract — The paper presents a liniarized model of
rocket’s vertical plain movement, in rapport with equal
signal line, represented by target line direction, linear
state estimator (observer) projection using a new reduced
order algorithm and gain matrix of optimal command
law after estimated state vector projection. The present
paper’s authors have obtained the observer projection
algorithm and command law projection algorithm. The
results of numeric simulation including state variables
and estimated state variables’ dynamics are presented.

Keywords: rocket, observer, algorithm, command law.

1. INTRODUCTION

The subject of this paper is the optimal control of
lateral deviation of a rocket in rapport with equal
signal line. A model for a rocket’s movement is used
and it expresses the rocket’s movement around mass
center, model that is liniarized around a reference
trajectory (PD — A — T direction, PD is leading point,
A —rocket, T — fixed or mobile target). State vector of
the dynamic model is composed of lateral deviation in
rapport with equal signal line, lateral deviation angular
velocity, incidence angle and angular pitch velocity.
The output is lateral deviation. Using a minimum
number of transducers (velocity transducer and/or
incidence angle or overload factor transducer) a linear
reduced order state estimator (observer) is projected,
which estimates state vector’s components.

Optimal command law has to cancel the deviation and
relative lateral speed of the rocket in rapport with
target line, and to stabilize the incidence angle and
pitch angular velocity.

A new algorithm for gain matrix of the optimal
command law projection and a new algorithm for
reduced order observer projection are used.

PC simulations validate theoretical results; calculus
programs based on the two algorithms and state
variables variation for a set of flying parameters (10"
flight second) are also presented.

2. ROCKET’S MOVEMENT MODEL

The rocket’s movement in vertical plain is described
by the following equations system [1]

T,,S:oc—T,,%cosS, (1)
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where 3 is the trajectory slope (9=06-a, 0 is the
pitch angle, o - the incidence angle, V - flying
velocity, m - the rocket’s mass, F, - the thrust force,
¢, and ¢, - aerodynamic drag and lift coefficients
(c‘, :cffoc), T, - time constant of the flying object
(rocket A) ),

P —
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S - aerodynamic reference surface of A, p - air

density.

Expressing equation (1) in a and O variables, one

obtains

4)

T,0=T,a+a-T, %cosS

or in a liniarized form in rapport with reference
(90’0‘0’90)

)

T,,G:TVAd+Aa—&,a=—§T,, cos 9,

0 =A0,a - perturbation.
A’s movement around mass center in vertical plain
is described by equation [1]

(6)

where J_ is the inertia moment of A in rapport with

Jzé-kméé-kmuot =m0,

horizontal axis, m, and m, - dynamic damp and

static stabilization moment coefficients, m; -
command moment coefficient. With 6=9+a and

equation (1), equation (6) leads to linear equation

(7

AdL + 280, AG + g A = kS + m %cos@o,

AS=38,E
frequency of the twist movement in vertical plain;

- damp coefficient and o, proper
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Equation (6) is equivalent with the following one
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f=—log_ T
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which, taking into account equation (8)

I

Jzzgwo_i:a”ma (’03_ . :(’Oé_al =4a,, (10)
J. T, J JT, T,

z z

leads to

0 =—a,0 - a,Ao + k;. an

Considering that rocket A is leaded using a three
points method (co-linearity PD — A -T), target line
(PD - T) being the equal signal line, lateral deviation
in rapport with this is [1]

y=V8 1, (12)

where f, is a perturbation due target line rotation,
which tends to deviate A from equal signal line and
gives A a normal acceleration w,. By equation (12)

derivation and taking into account equation (1), one
obtains

(13)

.V ; .
y:TAa+WT’WT =Vfr +Vfr —gcosH;
Vv
w; is an equivalent perturbation (normal acceleration

to equal signal line direction).
For above equations coefficients calculus one may
use calculus equations [2]

1 d +d
TV=d—,m0=,/d,d4—d3,§= ! 4

ity (14)
| 2.Jdd, - d,

where d,,d,,d,,d, are read from diagrams or graphic
characteristics for different rockets variants. Thus,

for an Oerlicon rocket at 10™ flight second
d, =15s",d, =40s?, d, =-20s>, d,=12s",
V =400m/s; it results T, =0.66s, o, =4.669s",

£=0.0619,k; =40s7, a, =0922s", a,=23.1825s".
Choosing the state vector x” = [y v Aa él the

system formed by equations (6), (9) and (13)
becomes

X, =X,,
Xy, =—Xy + Wy,
T, (15)
. 1 1 -
Xy=——X;+X, +—a0a,
14 Vv

X, =—ayxy —a,x, +kgb.

If the input is u=§ and perturbation vector is
ul =[& w,], system (15) becomes

(16)

5c=Ax+Bu+Eup,

where

0 1 3 0 0 0 0
00 T 0 0 0 1
A= v B=|  |E=|1 (a7
1 0 — 0
0 -— 1 T
L k 0 0
00 —a, —aq °

3. LINEAR OBSERVER PROJECTION
Let’s consider the linear observer described by
equations [3], [4]

Mz = Fz+Gu+ Hy, (18)
19)
with z(rx1),x(nx1), M(rxr),F(rxr), det(M) =0 and
rank(M)<n—gq, G(rxm), rank(E)zq, H(rxp),
P(nxr), Q(nxp), q<p;let’s consider the observer’s

xX=Pz+Qy,z

€rror

e=z— Nx, (20)

where N isa (rxr) matrix.

By equation (20) derivation and substituting x of
form (16), y=Cx, Z of form (18) and imposing that
all coefficients of x,u and u,being null, that means

G = MNB, (21
HC = MNA-FN, (22)
MNE =0, (23)
one obtains the error’s equation
Meé = Fe. (24)

The error (t—x) may be replaced function of e.

Indeed, taking into account equations (19) and (20),
one obtains

X-x=Pe (25)
if
PN+QC=1. (26)
With E of form
E=[E, ELE(n-p)xq)E((n—q)xq) (27)
equation (23) is equivalent with equation system
M,E, +M,E, =0, (28)
M ,E, + M E, =0.
Choosing M, = 06 ph(np) and M, = 00 g)(np)® it results
M = Bj; g}M@ —0,M,E, =0. (29)

Condition (22) is equivalent wit equations system
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M, 4, =H,C,M\4, -F =H,C,,

(30)
M4, =H,C,,M A, - F,=H,C,;
itresults #” =[H, H,] with
H, =M A,C ,H, =M ,4,C/, 3
F, =M A, - M 4,C/C,,F, =M,A4, - M ,A4,C/C,, (32)

F,=F,=0.

Matrices P and Q may be obtained from condition
(26), equivalent with following equations

R=P=00"=[0 0] (33)
P,+0,C,=0,0,C, =0, (34)
P, +0,C =0,0,C,=1;
one results
0,=C,,P,=-C;C, (35)

0, and P, are solution of system (33). G matrix is

calculated with (21).
Using the presented algorithm with parameters’

values for the 10™ flight second and ¢ = 001 0,
00 0 1
one obtains matrices
[0 0 1 0 0010 0
00 01 00 0 1 0
N = ,M = ,G=| |,
1 0 0 0 001 0 0
01 00 00 0 1 0
[0 o0 00 0 1
600 0 0000 (36)
H= LF = R
0 0 00 0 1
1600 0 00 0O
001 0 0 0
00 0 1 0 0
P= ,0= .
00 0O 1 0
00 0O 0 1

The algorithm proposed
following steps:

1. One makes coordinates transformation x =T7x for
system (16), where 7T is a non-singular
transformation; it results matrices

in this paper has the

A=T"'AT,B=T"'B=[I, 0] (37

where T is chosen having form T:[B fJ, with 7
randomly chosen so that rank(T) =n.

2. Gain matrix K is calculated for the optimal
control of system (Z,E) so that closed loop system
with matrix G =4 -BK be stable [5].

3. K and P are partionated [6]

- —1-— |P, P, = - -
k=[x Kz],P—{” 12},}’12_132{,1322_132; (38)
PZI PZZ
The following matrices are calculated

F)ll :RE15E2 :}7217 :Rl?z’ﬁzzl (39)

n-m*

For the studied case (one input and one output) it
results

K=k | ky ky kylR=[1], (40)

kl | k21 k22 k23

N
P=|k, | 1 0 0 (41)

ky | 0 1 0

ky | 0O 0 1

4. Matrices Q and Q are calculated

O =-|Pa+4"P-PBK| (42)
o=T""or™ (43)

5. One solves Riccati equation in rapport with
unknown P

PA+A"P-PBR'B"P+(Q=0. (44)
6. One calculates gain matrix
K=R"'B"P (45)
7. One calculates optimal command law
u=—Kx. (46)

With the presented algorithm one obtains matrices

0 -0432 -1.146 0327 83.917
p_| 0 SL66S L19 0174 | o, | -4592 |
0 0125 1.189 -0.186| -96.105| (47)
40 0287 —0.037 0725 15.416
0.0094 00037  0.0302 —0.0047 1
S _y.| 01314 —00776 —0.6868 0.1063 BT 0;
~0.104 —-00196 —0.1512 0.0224 0
~0.539 —0.1763 —14335 02196 0
0.08  —0.0039 —0.5169 —0.0047
G _1of| 00039 0021 01639 00079 |
~0.5160  0.1639  1.5346 —0.0984 |
0.1337 —0.0079 —0.0984 —0.0058 (48)
0.0005 0014 1541  0.0181
1o 0014 00057 -0.287 00039 R[]
1541 —0287 4598  0.0105
0.0181 —-0.0039 0.0105 0
~2.2361 105573 05728  9.5164 —0.1118
| -2.3607 | 05728 07892 9.9349  —0.118
71805432 | 9.5164 9.9349 263.8207 —4.0272]
2.0979 ~0.1118 —0.118 —4.0272  0.1049
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Fig.1 - Matlab /Simulink model of the rocket’s
movement

Using Matlab/Simulink model of the rocket’s
movement from fig.1 and a simulation program, one
calculates x,(r) and ,(¢) (curves x, of blue color, X,

of red color), represented in fig.2.

Time [5] Time [s]

0.0
Aoi[ged]
0.1 ¢-

0.16¢-

-0.2
u]

Time [s]

Time [s]
Fig.2 — Time varying of x,,x,

The obtained results with these algorithms are
superior to those obtained with algorithms from [7],
[8], [9] from the point of view of precision.

4. CONCLUSIONS

The paper presents an optimal command system of
lateral deviation of a rocket in rapport with equal
signal line. A’s model is a liniarized model which
expresses the dynamic of the main variables: lateral
deviation and deviation velocity in rapport with equal
signal line, incidence angle variation and pitch
angular velocity. Because the lateral deviation is
difficult to measure, one measures incidence angle
and pitch angular velocity and estimates the full state
vector using a linear state estimator (observer).

A new projection algorithm of such an observer is
presented. The system’s command is chosen to be
optimal, based on usage of a quality quadratic
criterion. For gain matrix’s projection of the optimal
command, a new algorithm is presented. This
contains weight matrices, from quality quadratic
criterion, calculus after coordinates transformations
have been made. With obtained matrices, a Riccati
equation is solved and after that gain matrix of the
optimal command is calculated. Simulation program
calculates state observer, gain matrix and time
functions, which expresses state variables dynamics
of the system and estimated state variables dynamics.
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