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Abstract −−−− This paper suggests a new definition of 
apparent power based on the instantaneous power 
theory. The component corresponding to non-useful 
power and the quadratic relationship between 
apparent, active, reactive and non-useful powers are 
also highlighted. A few case-studies draw a parallel 
between the results according to the well-known 
definitions gathered from previous literature and the 
results based on the new expression. It is shown that, 
under sinusoidal and balanced conditions, all 
definitions of apparent power lead to the same results. 
However, in the case of sinusoidal unbalanced 
situations, the results based on the new definition are 
identical only with those corresponding to Buchholz’s 
and Czarnecki’s definitions. In contrast, under non-
sinusoidal conditions, the suggested definition leads to 
higher values of the apparent power. 

Keywords: Instantaneous Complex Apparent Power, 
Apparent Power, Power Factor. 

1. INTRODUCTION 

A large number of research publications and 
specialists have discussed and are still discussing 
issues related to the properties of the powers flow in 
three-phase loads operating under non-sinusoidal 
voltages and currents conditions [1]-[6]. The main 
phenomenon is the increasing of the apparent power 
of the power supply over the values corresponding to 
the active and reactive powers under sinusoidal 
conditions. The quantitative identification of this 
increase is very important due to the impact on the 
power factor in power distribution systems and 
electrical equipment. It is generally accepted that 
under non-sinusoidal conditions, along with the 
active power (P) and the reactive power (Q), another 
power – frequently named the distortion power (D) – 
is present. The quadratic relation between these 
powers and the apparent power (S) is broadly 
accepted too:  

 2222 DQPS ++= . (1) 

The definitions and the interpretations of the active 
and reactive powers are almost near unanimously 
accepted. Under these conditions, it is clear that 
defining the apparent power will determine the 
distortion power and vice versa. The active power has 

a clear physical signification and a well-argued 
mathematical definition, as the average instantaneous 
power over one cycle. In this respect, the question is 
whether defining the apparent power by a 
mathematical expression is relevant or not. 
The phasor theory applied to the three-phase system 
proved to be a very useful tool in control applications 
and determined good practical results and important 
physical interpretations. Last but not least, applying 
the instantaneous complex apparent power theory to 
the active filters control proves its usability and its 
connection to the physical phenomena in three-phase 
systems [7]-[10]. 
This paper is not intended to starting a debate, but to 
be nothing but a point of view based on mathematical 
correctness. 

2. THE THEORY OF APPARENT 
INSTANTANEOUS COMPLEX POWER  

The space phasor of the supply voltages of the 
distortion load and distorted three-phased current, u 
and i, are defined in the following matrices [11] 
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The apparent instantaneous complex power is defined 
as 
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The direct and alternating components can be 
outlined in the real and imaginary parts (sometimes 
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named instantaneous active and reactive powers [1]), 
p and q: 
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P and Q are the average values resulting from 
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It is evidently that 
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3. NEW DEFINITIONS 

In the square of the instantaneous complex power 
modulus, the components of the instantaneous 
powers can be separated by 
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The root mean square values are calculated from 
relation (8) 
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In the relation (9), the square of active and reactive 
powers P and Q can be identified. In these 
conditions, comparing with relation (1), the relation 
(9) suggests a new definition for apparent power: the 
root mean value of instantaneous complex power 
modulus 
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Thus, the following relation can be obtained 
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because 
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Comparing the relations (11) and (1), a new 
definition for distortion power can be given  
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Also, the relations (4), (6) and (12) suggest defining 
of following complex powers: 
- the instantaneous distortion complex power, 

 ~~ jqpd += ; (13) 

- the average apparent complex power, 

 jQPS av += . (14) 

So, the apparent instantaneous complex power can be 
expressed that the sum of the two powers, 

 dSs av += . (15) 

From relation (4), the instantaneous apparent 
complex power modulus is obtained 

 ( ) ( )2222
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The relations (11), (12) and (13) show that the 
distortion power and instantaneous distortion power 
contain all non-useful powers (distortion power and 
the power because of unbalanced load). 

4. CASE STUDIES 

Now, there are four different definitions of the 
apparent power in literature. Thus, in the IEEE 
Standard Dictionary of Electrical and Electronics 
Terms there are two different definitions, 
respectively [12]: 

 TTSSRRA IUIUIUS ++= ; (17) 
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There is a third definition, introduced by Buchholz 
[13],  
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The one of most consistent researchers in this area is 
professor Leszek S. Czarnecki from Electrical and 
Computer Engineering Department of Louisiana 
State University, Baton Rouge, USA, which 
developed the Currents’ Physical Components (CPC) 
theory [13], [14]. He proposed generalizing relation 
(19) for nonsinusoidal conditions 
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where, 
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are the effective values of “k” order harmonics on 
each phase. 
It is evidently that relation (18) can not be applied 
under nonsinusoidal conditions because the third 
term under root is missed. Also, the relation (20) is 
another form of relation (19). 
We will compare the results obtained by relations 
(17) and (20) with the results obtained by the new 
relation (10). 
Under sinusoidal conditions and balanced load all 
three relations became identically. 

4.1. Sinusoidal voltage and nonsinusoidal and 
balanced currents 

In this case, the currents don't have a direct 
component and will contain N harmonics, and the 
space phasor components will be 
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Using relation (15) and (17), the parts of 
instantaneous complex apparent power are obtained 
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α is the initial phase of voltage. 

The square value of apparent power defined by 
relation (10) is 
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In conclusion, for sinusoidal voltage and 
nonsinusoidal and balanced currents, the results 
obtained by relations (17), (20) and (10) are 
identically. 

4.2. Sinusoidal voltage and linear and 
unbalanced load 

We will refer to example given by professor 
Czarnecki in [15], respectively, a resistive load (R), 

connected as shown in Fig. 1, which is supplied from 
symmetrical source of a sinusoidal, positive voltage 
with V120U,tcosU2uR == ω . He found 
I=103,9A, SA =24,9 kVA, SB =SC =30,5 kVA and, 
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From relations (23) and (5) result  0Q;UI3P == ;
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We can calculate from relation (13): 
2222 DIU3d ==  and 

 kVAUIDQPS 5,306222 ==++= .
So, and in this case, relation (10) has given the same 
result as relations (17) and (20). We notice that the 
alternating components of the real and imaginary 
parts exist because the currents are unbalanced. 
Consequently, in this case, the alternative 
components of real and imaginary parts of 
instantaneous complex apparent power are 
determined by unbalanced currents. It can show that 
if the alternative components are compensated by a 
three wire active parallel filter, because the currents 
on the all phases became sinusoidal.  

4.3. Nonsinusoidal voltage and current 

Let us consider a balanced three wire load in 
connection Y supplied by a nonsinusoidal and 
symmetrical voltage source. Each phase voltage 
contains ( 16 ±q ) order harmonics with amplitude 

( )±qU m 6/1 , q=1..5 and Um1=100 V (Fig. 2). The 

phase load has ( )HLR π1002/1;2/3 •=Ω= .
So, the phase current is lower distorted and contains 
the same harmonics as voltage (Fig. 3). 
We calculated all the powers and total power factor   
by each method. The active and reactive powers were 
P=9,26 kW, Q=5,55 kVAR. We can see the apparent 
power, the distortion power and total power factor, 
calculated by those three methods, in Table 1. 

S
A

SB SF DA DB DF λA λB λf

11,1 11,
1

11,3
1

2,5
9

2,5
9

3,3
9

0,8
3

0,8
3

0,8
1

Table 1: The powers and total power factor under 
nonsinusoidal conditions 

Fig. 1. Circuit with sinusoidal voltage and linear 
and unbalanced load
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Let us precise that the values of powers from Table 1 
are kVA and kVAD, respectively. In this case the 
apparent power calculated by relation (10) is upper 
and distorted power too. 
Using relation (10) it can obtain, 
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The relation (24) shows that under nonsinusoidal 
voltage and current, the new definition of apparent 
power contains a term depended by voltage and 
current different harmonics and their phases 
( kk and βα ).   

4.4. Nonsinusoidal voltage and unbalanced load 

Let us consider the same non-sinusoidal and 
symmetrical voltage source which supplied 
unbalanced load, as show in Fig. 4. 
For R=3 Ω  the currents on the R and S phases are 
strong distorted and opposite (Fig. 5). 
In this case, the active and reactive powers have been 
P=5,43 kW and Q=0. The values obtained for 
apparent and distortion powers (in kVA and kVAD) 
are showed in Table 2. 

We can see that, if nonsinusoidal voltage and current 
and unbalanced load there are simultaneously, the 
apparent power values calculated by relations (10), 
(17) and (20) are different. 
Because the active power are the same P=5,43 kW, it 
means that the total power factor depends on the 
selection of the apparent power definitions. Thus, it 
seems to be unclear what the true value of total 
power factor is. It is unclear as well, what the power 
rating of a compensator is needed for the power 
factor improvement to unity value. 

S
A

SB SF DA DB DF λA λB λf

6,27 7,6
8

8,1
8

3,1
3

5,4
3

6,1
2

0,8
6

0,7
1

0,6
6

Table 2: The powers and total power factor under 
nonsinusoidal conditions and unbalanced load 

So, three values for compensator power rating are 
obtained: 

 VASVASVAS CfCBCA 12,6;43,5;13,3 === .

The differences are great. So the power rating of a 
compensator calculated by apparent power given by 
relation (10) is upper with 95%, respectively with 
12,7% than the powers rating of a compensator 
calculated by apparent power given by relations (17) 
and (20). 

Fig. 2. The nonsinusoidal voltage and current with R-
L load 

Fig. 3. Voltage harmonics 

Fig. 4. Three wire, nonsinusoidal voltage source 
and unbalanced load 

Fig. 5. The wave shape of R and S phase currents 
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CONCLUSION 

The active power P is average value of real part of 
instantaneous complex apparent power, this is 
unanimously accepted. The reactive power Q is 
average value of imaginary part of instantaneous 
complex apparent power, this is large accepted. In 
these conditions, look at relation (9), correctly from 
mathematical point of view, certainly. Because the 
fourth term is zero, the relation contains, in right part, 
two known terms (P2 and Q2) and one unknown term. 
So, is naturally to introduce relations (10) and (12). 
The mathematical correctness is not enough, but it is 
necessary, we think so. These relations represent new 
definitions for apparent power and distortion power. 
We notice that apparent power is defined as the root 
mean square value of instantaneous complex 
apparent power modulus. The distortion power is 
defined similarly as the root mean square value of 
instantaneous complex distortion power modulus. 
From the case studies considered, we established: 

- for sinusoidal voltage and balanced linear or 
nonlinear load, the apparent power introduced 
give the same value as relations (17) and (20); 

- for sinusoidal voltage and unbalanced linear or 
nonlinear load, the apparent power introduced 
give the same value as relation (20) but  upper 
than (17); 

- for nonsinusoidal voltage and balanced or 
unbalanced linear or nonlinear load, the 
apparent power introduced give upper value 
than relations (17) and (20); 

- the alternate components of real and imaginary 
parts of instantaneous complex apparent 
power, characterize all  the supplementary 
powers (unbalanced load and distortion load). 
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