INTERPHASE POWER CONTROLLER (IPC) USING ROTARY TRANSFORMERS

Lev Kalinin, Dmitrii Zaitsev, Mihai Tirsu
Power Engineering Institute of Academy of Sciences of Moldova, str. Academy, 5, Chisinau, Republic of Moldova e-mail: mtirsu@cc.acad.md

Abstract – This paper introduces a new variant of IPC using rotary transformers for independent control of active and reactive output power, the control strategy is presented to maintain the required power characteristics.

Keywords: phase shifting transformer, susceptances, rotary transformers, injected voltage.

1. INTRODUCTION

The IPC technology is designed to improve the management of power flow in AC networks. The controller uses conventional elements only: a phase shifting transformer, two susceptances (one inductive and the other capacitive) and circuit breakers. The desired power level can be adjusted by changing either the internal phase shift angles or the values of the susceptances. Greater operating flexibility can be achieved by the use of rotary transformers.

2. PRINCIPLE OF OPERATION AND POWER CHARACTERISTICS

The power characteristics of an IPC with the use of rotary transformers can be demonstrated on the base of device [1] where the position of the power control characteristic is offset and where its useful portion is shifted with the level of the power set point (Adapted IPC).

Figure 1 illustrates the internal connections of Interphase Power Controller with shifted characteristics and the use of rotary transformers. It is a series-connected controller consisting of phase shifting transformer (ET) with fixed internal phase shift (φ), two conjugated susceptances (B_1 and B_2), booster transformer (BT) and two rotary transformers (RT1 and RT2).

Rotary transformers [2] are constructed similarly to a wound-rotor induction machines. By connecting the stator windings (W_s) in parallel and the rotor windings (W_r) in series, it is possible to control the magnitude (m) and phase shift (α) of the generalised voltage injection as shown in Figure 2.

Figure 1. Schematic diagram illustrating the IPC using rotary transformers

The variation of m and α by mechanical adjusting of rotary transformers angular turnings β_1 and β_2, makes it possible to control both the magnitude and the angle of the line current without the need for more expensive power electronic devices.

Figure 2. Phasor diagram illustrating the regulation of injected voltage
Phasor diagram shown in Figure 2 (for condition $|B_1| = |B_2| = B$) determines the operating output current (I_r) of IPC by following equation:

\[
I_r = I_{B1} + I_{B2} = jB(U_{B2} - U_{B1}) = 2BU_s \left[\sin \frac{\psi j}{2} - jm e^{j(\alpha + \delta_{sr})} \right],
\]

where:

\[
I_{B1} = -jB_1U_{B1},
\]

\[
U_{B1} = U_r e^{j\delta_{sr}} - U_s \left[1 - me^{j(\alpha + \delta_{sr})} \right];
\]

\[
I_{B2} = jB_2U_{B2},
\]

\[
U_{B2} = U_r e^{j\delta_{sr}} - U_s \left[e^{j\psi} + me^{j(\alpha + \delta_{sr})} \right].
\]

The apparent output power (S_r) of IPC:

\[
S_r = I_r \cdot U_r = I_r \cdot U_s e^{-j\delta_{sr}} = 2BU_s U_r \sin \frac{\psi j}{2} \left[e^{j\frac{\psi}{2} - \delta_{sr}} - j \frac{m e^{j\alpha}}{\sin \frac{\psi}{2}} \right].
\]

Active and reactive components of the apparent output power (P_r and Q_r) of the apparent output power S:

\[
P_r = S_m \left[\cos \left(\frac{\psi}{2} - \delta_{sr} \right) + \frac{m}{\sin \frac{\psi}{2}} \sin \alpha \right],
\]

\[
Q_r = S_m \left[\sin \left(\frac{\psi}{2} - \delta_{sr} \right) - \frac{m}{\sin \frac{\psi}{2}} \cos \alpha \right],
\]

where: $S_m = 2BU_s U_r \sin \frac{\psi}{2}$.

The input operating current of IPC can be expressed as follow:

\[
I_s = I_{B1} + I_{B2} e^{-j\psi} = 2BU_r \left[\sin \frac{\psi j}{2} \left(e^{j\delta_{sr} - \frac{\psi}{2}} - j \frac{m U_s}{U_r} e^{j(\delta_{sr} - \frac{\psi}{2} + \alpha)} \right) \right]
\]

The apparent input power of IPC:

\[
S_s = I_s U_s = 2BU_s U_r \sin \frac{\psi j}{2} \left[e^{j(\delta_{sr} - \frac{\psi}{2})} - j \frac{m U_s}{U_r} e^{j(\delta_{sr} - \frac{\psi}{2} + \alpha)} \right]
\]

Active and reactive components of the apparent input power:

\[
P_s = S_m \left[\cos \left(\frac{\delta_{sr} - \frac{\psi}{2}}{2} \right) + \frac{m}{\sin \frac{\psi}{2}} \sin \alpha \right],
\]

\[
Q_s = S_m \left[\sin \left(\frac{\delta_{sr} - \frac{\psi}{2}}{2} \right) - \frac{m}{\sin \frac{\psi}{2}} \cos \alpha \right].
\]

Let’s assume further that operating problems of IPC are reduced to formation the required output power characteristics in situation where angle δ_{sr} imposed by the network is changing from $\delta_{sr} = 0$ to $\delta_{sr} = 30^\circ$. With a view of simplification of the subsequent calculations all further results correspond to a condition $|U_s| = |U_r| = 1$. On the need to support both the requested values of P and Q the control strategy for IPC can be formulated as it follows:

\[
m = \frac{P_r \sin \left(\frac{\psi}{2} - \delta_{sr} \right) - Q_r \cos \left(\frac{\psi}{2} - \delta_{sr} \right)}{P_r \cos \alpha + Q_r \sin \alpha} \sin \frac{\psi}{2},
\]

\[
\alpha = \arctg \frac{P_r - S_m \cos \left(\frac{\psi}{2} - \delta_{sr} \right)}{S_m \sin \left(\frac{\psi}{2} - \delta_{sr} \right) - Q_r}.
\]

Tuning of a phasor $m = me^{j\alpha}$ on a value and on a phase provides the previously settled control conditions for IPC.

The basic equations for real and reactive components of power at the output terminals of IPC also allow to
determine the full area of P free control at a preset value of Q or on the contrary - the full area of Q free control at a preset value of P:

$$P_r = S_m \left[\cos \left(\frac{\psi}{2} - \delta_{sr} \right) \right]$$

$$Q_r = S_m \left[\sin \left(\frac{\psi}{2} - \delta_{sr} \right) \right]$$

Potential areas for control of active power in situations relative to different values of preset reactive power at the output terminals of IPC are shown on Figure 3. The first situation relevant to condition $Q_r = 0$, the second - to condition $Q_r = S_m \sin \left(\frac{\psi}{2} - \delta_{sr} \right)$ what is in conformity with the absence of any special request to Q. Oval configuration correspond to a first situation, the full shadowed area describes the full control ability of examined IPC with $S_m = 1$ and $m = 0.075$.

The chosen on Figure 3 two horizontal lines ($P_r = 0.83$ and $P_r = 1.1$) are define the limits of uninterrupted control within accepted framework of δ_S, change ($0 \leq \delta_{sr} \leq 30^\circ$) at $Q_r = 0$. Control strategy for realization of above mentioned conditions by means of tuning phasor m is submitted on Figure 4.

Figure 3. Typical capability P characteristics of IPC using rotary transformers

$$U_{B1} = U_r \sqrt{\left[\sin \delta_{sr} + m \sin (\alpha + \delta_{sr}) \right]^2 + \left[\cos \delta_{sr} + m \cos (\alpha + \delta_{sr}) - 1 \right]^2},$$

$$U_{B2} = U_r \sqrt{\left[\sin \delta_{sr} - m \sin (\alpha + \delta_{sr}) - \sin \psi \right]^2 + \left[\cos \delta_{sr} - m \cos (\alpha + \delta_{sr}) - \cos \psi \right]^2}.$$
3. CONCLUSIONS

Interphase power controller using rotary transformers possesses the ability to generate and absorb both real and reactive power. The new variant of power flow controller, described in this paper, provides a rather simple and potentially less expensive alternative for the smooth power control in comparison with power electronic devices.

Glossary

Per unit values are used throughout the text wherein:
- B_1 - negative susceptance;
- B_2 - positive susceptance;
- I_{B1} - current of susceptance B_1;
- I_{B2} - current of susceptance B_2;
- I_s - input operating current of IPC;
- I - output operating current of IPC;
- U_{B1} - voltage on susceptance B_1;
- U_{B2} - voltage on susceptance B_2;
- U_s - voltage of sending end;
- U_r - voltage of receiving end;
- ψ - phase shift created by transformer ET;
- S - on-load switch to reverse angle ψ;
- δ_α - phase difference between U_s and U_r;
- C - compensation of magnetizing current;
- m - modulus of injected voltage;
- α - phase shift of injected voltage.

References