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Abstract −−−− Jump resonance is one of the phenomena 
which characterize a category of nonlinear systems and 
whose analysis reveals specific behavioral 
particularities. The paper presents two graphical-
analytical methods which enable us to determine the 
occurrence conditions of the jump resonance 
phenomenon in nonlinear feedback systems. The jump 
resonance is produced around the system’s resonant 
frequency and consists of multiple values of the 
amplitude and phase of the nonlinear element’s input 
signal (and also of the system’s output signal) when the 
amplitude or frequency of the harmonic input signal 
varies continuously.  
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1. THEORETICAL CONSIDERATIONS 

We have shown that using the concept of incremental 
input describing function it is possible to estimate the 
stability of the forced oscillation of a perturbed 
nonlinear feedback system, depending on the relative 
position of the linear element’s transfer locus and of 
the nonlinear element’s inverse negative describing 
locus, [3].  
Let us consider the nonlinear system in Fig.1. 
 

Figure 1: Nonlinear feedback system. 
 

It was demonstrated, [4], that if the system is perturbed 
such that the nonlinear element’s input signal contains 
a supplementary component  of the same frequency as 
the harmonic input signal but of very small amplitude, 
and with a different phase, the characteristic equation 
of the autonomous system is: 
 

0),()(1 =+ ϕω ANjH i (1) 
 
where, ),( ϕANi is the incremental input describing 
function and )( ωjH is the transfer locus of the 
nonlinear system, considered of the following form: 

)()()( ωωω IR jHHjH +=  (2) 
 

Let us note: 
),(),(),( ϕϕω ANANAN iIiRi += (3) 

 
and therefore equation (1) becomes: 
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which is transformed in: 
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We have shown, [4], that the real and imaginary parts 
of the incremental input describing function have the 
following expressions: 
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and thus equations (5) become: 
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where we have designated: 
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We eliminate the argument 2φ between the two 
equations (7) and after further processing we obtain: 
 

[ ] [ ] [ ]222 )()()()( ArHAhH IRR =++ ωω (8) 
 

which, for a constant value of amplitude A=A1,
represents the equation of a circle with the center in 
the point of coordinates ( )0,( 1AhR− and radius )( 1Ar ,
where we noted: 
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The curve described by equation (8)  is a critical curve 
of jump resonance, parameterized with the values of 
the amplitude A.
The relative position of the transfer locus of the 
system’s linear part to the circle described by equation 
(8) enables us to estimate the stability of the nonlinear 
system, and thus of the occurrence of the jump 
resonance phenomenon as well.  
If the transfer locus of the linear element does not 
intersect the jump resonance critical curve, this 
phenomenon does not take place, and the output 
oscillation is stable.  
If equation (8) has solutions, therefore the transfer 
locus )( ωjH intersects o portion of the locus 

),(
1
ϕANi

− corresponding to a constant value of the 

amplitude A, the jump resonance phenomenon does 
occur. As a result, the output harmonic oscillation is 
unstable and undergoes an abrupt variation (resonant 
jump) of amplitude and phase, having multiple values 
for the same frequency of the harmonic input signal.  
Results equivalent to the ones provided by equation (8) 
can also be obtained in a different way. Let us consider 
the system with the structure in Fig.1 for which N(A) is 
the nonlinearity’s describing function, considered a 
real function, and )(sH the transfer function of the 
linear element, having a low pass filter characteristic. 
If the input signal is harmonical with amplitude R and 
frequency ω, the frequency response of the error is: 
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The jump resonance phenomenon means that, for a 
constant value of the frequency ω (close to the 
resonant frequency), the amplitude and phase of the 
nonlinearity’s input signal has multiple values for a 

continuous variation of the amplitude of the system’s 
input signal. Thus the general condition for jump 
resonance is: 
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in the resonant points the following conditions being 
fulfilled: 
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and characterizes an S-shaped A(R) curve. In absolute 
values, equation (11) may be written: 
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where )(),( ωω IR HH are the real and imaginary parts 
of the linear element’s frequency response. Assuming 
the describing function N(A) is differentiable with 
respect to A, we impose condition (13) to equation 
(14), which, becomes, following differentiation: 
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or, in a compact form: 
 

0),,( =AHHf IR (15) 
 

It is clear that for a constant value of the amplitude A
corresponding to the point on the A(R) characteristic in 
which the resonant jump takes place, in the complex 
plane ),( IR jHH equation (15) represents a family of 
curves whose envelope satisfies: 
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Imposing conditions (16), equation (15) becomes: 
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where we have noted: 
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where )("),(' ANAN are the first and second 
derivatives of the function )(AN with respect to A.
Equations (17), with the above notations, describe the 
jump resonance critical curve, which separates a 
surface in the complex plane in which jump resonance 
occurs only if the transfer locus of the linear element 
intersects it. 

2. SIMULATION RESULTS  

Let us consider that the transfer function of the linear 
element L is: 
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and the system contains a cubic nonlinearity with the 
describing function: 
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Representing in the complex plane the jump resonance 
critical curve provided by equation (8) for a constant 
value of the amplitude A = A1:
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and the transfer locus of the linear element 
corresponding to the transfer function H(s):
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We observe, Fig.2, that the two curves intersect, and 
the forced oscillation of frequency  ω is unstable, the 
intersection points indicating the frequencies at which 
the resonant jumps occur.  

Figure 2: Illustration of the graphical-analytical 
method; A=0.5, b=1; k=1; T1 = 0.4 sec., T2=1.1 sec. 

 
In the opposite situation, Fig.3, equation (1) is not 
fulfilled, and consequently the forced oscillation of the 
system’s output is stable. 
 

Figure 3: Illustration of the graphical-analytical 
method; A=0.5, b=1; k=1; T1 = 0.4 sec., T2=0.5 sec. 

 

Figure 4: Critical jump resonance curve for cubic 
nonlinearity; A=0.5, b=1; k=1; T1 = 0.4 sec., T2=1.1 

sec. 
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Similar conclusions are obtained if we use the method 
which implies fulfilling the conditions (16).  
 

Figure 5: Critical jump resonance curve for cubic 
nonlinearity; A=0.5, b=1; k=1; T1 =0.4 sec., T2=0.5sec. 
 
Thus, for the same system structure, we provided 
examples that if the transfer locus of the linear element 
passes through the zone delimited by the jump 
resonance critical curve  resonant jumps do occur in 
the system, Fig.4,  and if not, the forced oscillation of 
the system’s output is stable, Fig.5. 
 

3. CONCLUSIONS 

We analyzed the behavior of a nonlinear automatic 
system form the point of view of the stability of the 
output forced oscillation, with examples for the 
occurrence conditions of the jump resonance 
phenomenon. For this, we presented two graphical-
analytical methods to estimate if resonant jumps occur 
in the system. The theoretical considerations are 
confirmed by the results obtained through numerical 
simulation.   
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