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Abstract −−−− The paper focuses on the control problem of 
a tentacle robot that performs the coil function of the 
grasping. First, the dynamic model of a tentacle arm 
with continuum elements produced by flexible 
composite materials in conjunction with active-
controllable electro-rheological fluids is analyzed. 
Secondly, both problems, i.e. the position control and 
the force control are approached. The difficulties 
determined by the complexity of the non-linear 
integral-differential equations are avoided by using a 
very basic energy relationship of this system. Energy-
based control laws are introduced for the position 
control problem. A force control method is proposed, 
namely the DSMC method in which the evolution of the 
system on the switching line by the ER fluid viscosity is 
controlled. Numerical simulation is also presented. 

Keywords: distributed parameter systems, grasping, 
tentacle robots, and force control. 

1. INTRODUCTION 

A tentacle robot is a hyper-degree-of-freedom (HDOF) 
manipulator and there has been a rapidly expanding 
interest in its study and construction lately. The control 
of these systems is very complex. In [1], the control by 
cables or tendons designed to transmit forces to the 
elements of the arm in order to closely approximate 
the arm as a truly continuous backbone was analyzed. 
Gravagne [2] analyzed the kinematical model of 
“hyper-redundant” robots, known as “continuum” 
robots. Important results were obtained by Chirikjian 
and Burdick [3-6] which laid the foundations for the 
kinematical theory of hyper-redundant robots. 
Mochiyama has also investigated the problem of 
controlling the shape of an HDOF rigid-link robot with 
two-degree-of-freedom joints using spatial curves 
[7,8]. In [9, 10], the “state of art” of continuum robots 
are presented. In other papers [11, 12], several 
technological solutions for actuators used in hyper-
redundant structures are presented and conventional 
control systems are introduced. Another paper [13] 
proposes a dynamic model for hyper-redundant 
structures such as an infinite degree-of-freedom 
continuum model and some computed torque control 
systems are introduced. In [14], a dynamic model for 

an ideal planar tentacle system is presented and 
optimal control solutions are discussed. The difficulty 
of the dynamic control lies in the determined by 
integral-partial-differential models with high 
nonlinearities that characterize the dynamics of these 
systems. In [15], the dynamic model for 3D space is 
inferred and a control law based on the energy of the 
system is analyzed. 
In this paper, the problem of a class of tentacle arms 
with continuum elements that performs the grasping 
function by coiling is discussed. First, the dynamic 
model of the system is inferred. The difficulties 
determined by the complexity of the non-linear 
integral-differential equations, which represent the 
dynamic model of the system, are avoided by using a 
basic energy relationship of this system. Energy-based 
control laws are introduced for the position control 
problem. A force control method is proposed, namely 
the DSMC (Direct Sliding Mode Control) method, the 
evolution of the system on the switching line by ER 
fluid viscosity control. 

2. BACKGROUND 

2.1. Technological model 

The paper studies a class of tentacle arms that can 
achieve any position and orientation in 3D space, and 
that can perform a coil function for the grasping 
(Figure 1). 
 

Figure 1. The tentacle grasping arm 
 
Technologically, these arms are based on the use of 
flexible composite materials in conjunction with active 
controllable electro-rheological (ER) fluids that can 
change their mechanical characteristics in the presence 
of electrical fields. The general form of the arm is 
shown in Figure 2. It consists of a number (N) of 
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elements, cylinders made of fiber-reinforced rubber. 
There are four internal chambers in the cylinder, each 
of them containing the ER fluid with an individual 
control circuit. The last m elements ( )Nm < represent 
the grasping terminal. These elements contain a 
number of force sensors distributed on the surface of 
the cylinders. These sensors measure the contact with 
the load and ensure the distributed force control during 
the grasping. The sensor network is constituted by a 
number of impedance devices (see Figure 3) that 
define the dynamic relationship between the grasping 
element displacement and the contact force. 
 

Figure 2. The force sensors 
distribution 

Figure 3. The cylinder 
structure 

 

2.2. Theoretical model 

The essence of the tentacle model is a 3-dimensional 
backbone curve C that is parametrically described by a 
vector ( ) 3Rsr ∈ and an associated frame ( ) 33×∈ Rsφ
whose columns create the frame bases (Figure 4). The 
independent parameter s is related to the arc-length 
from the origin of the curve C, [ ]Ls ,0∈ , where: 

 ∑
=

=
N

i
ilL

1

(1) 

where il represent the length of the elements i of the 
arm in the initial position. 
The position of a point s on curve C is defined by the 
position vector: 

 ( )srr = , [ ]ls ,0∈ (2) 

For a dynamic motion, the time variable will be 
introduced, ( )tsrr ,= . We used a parameterization of 
the curve C based upon two “continuous angles” ( )sθ
and ( )sq [3-6] and the length variable u (Figure 4). At 
each point ( )tsr , , the robot’s orientation is given by a 
right-handed orthonormal basis vector { }zyx eee ,,

and its origin coincides with point ( )tsrr ,= . The 
position vector on curve C is given by: 

 ( ) ( ) ( ) ( )[ ]Ttsztsytsxtsr ,,,, = (3) 

where the three parameters that appear in the relation 

(3) are as follows: ( ) ( ) ( )∫ ′′′=
S

sdtsqtstsx
0

,cos,sin, θ ,

( ) ( ) ( )∫ ′′′=
S

sdtsqtstsy
0

,cos,cos, θ , ( ) ( )∫ ′′=
S

sdtsqtsz
0

,sin, , 

with [ ]ss ,0∈′ .

Figure 4. (a) The backbone structure; (b) The 
backbone parameters 

 
We can adopt the following interpretation [2, 6]: at any 
point s, the parameters ( )tsx , , ( )tsy , and ( )tsz ,
determine the current position and ( )sφ determines the 
robot’s orientation. The robot’s shape is defined by the 
behaviour of functions ( )sθ and ( )sq . The robot 
“grows” from the origin by integrating to get ( )tsr , , 

[ ]ls ,0∈ . The velocity components are obtained by 
deriving the corresponding parameter of the robot 
movement [16]. For an element dm, where 

dsdm ⋅= ρ , the kinetic and gravitational potential 
energy will be: 

 ( )2222

2
1

uzyx vvvvdmdT +++= (7) 

 zgdmdV ⋅⋅= (8) 

From (7) and (8), we obtain: 
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 ∫ ∫ ′′=
l s

dssdqgV
0 0

sinρ (10) 

The elastic potential energy will be approximated by 
the bending of the element [10]: 
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 ( )∑
=

+=
N

i
iieb qdkV

1

22
2

4
θ (11) 

We assumed that each element has a constant 
curvature and a uniform equivalent elasticity 
coefficient k (constant on all the length of the arm). 
We shall consider ( )tsF ,θ , ( )tsFq , the distributed 
forces on the arm length that determine motion and 
orientation in the θ - and q -plane. From [14], the 
mechanical work is: 

 ( ) ( ) ( ) ( )( )∫ ∫ +=
l t

q dsdsqsFssFL
0 0

,,,, ττττθτθ �� (12) 

where ( ) ( )ts
t

ts ,,
∂
∂

=
θθ� and ( ) ( )ts

t
qtsq ,,
∂
∂

=� .

The energy-work relationship will be 

 

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( )( )∫ ∫ +=

=+−+
l t

q dsdsqsFssF

VTtVtT

0 0

,,,,

00

ττττθτθ �� (13) 

where ( )tT , ( )0T and ( )tV , ( )0V are the total kinetic 
energy and total potential energy of the system at the 
time t and 0, respectively. 

3. DINAMIC MODEL  

The robot model is considered a distributed parameter 
system defined on a variable spatial domain 

[ ]L,0=Ω and the spatial coordinate s. The dynamic 
model is derived by using Lagrange equations: 
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where ( )⋅∂∂ , ( )⋅δδ denote the classical and 
functional partial derivatives. From (9), (10), (11), the 
distributed parameter model becomes, 
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where we used the notations: ( ) ttsqq ∂′∂=′ ,� ,

( ) 22 , ttsqq ∂′∂=′�� , ( )tsFF qq ,= , [ ]Ls ,0∈ ,

[ ]ss ,0∈′ .
The state of this system at any fixed time t is specified 
by the set ( ) ( )( )stst ,,, νω , where [ ]Tqθω =
represents the generalized coordinates and ν defines 
the momentum densities. The set of all functions 

Ω∈s that ω , ν can take on at any time is the state 
function space ( )ΩΓ . We shall assume that 
( ) ( )Ω⊂ΩΓ 2L .

The control forces have the distributed components 
along the arm, ( )tsF ,θ , ( )tsFq , , [ ]Ls ,0∈ that are 
determined by the lumped torques, 

 ( ) ( ) ( )∑
=

−=
N

i

tilstsF
i

1

, θθ τδ (18) 

 ( ) ( ) ( )∑
=

−=
N

i
qq tilstsF

i
1

, τδ (19) 

where δ is Kronecker delta, llll N ==== …21 ,
and 

 ( ) ( ) 821 dSppt
iii

⋅−= θθθτ (20) 

 ( ) ( ) 821 dSppt
iii qqq ⋅−=τ , Ni ,,2,1 …= (21) 

In (20), (21), 1
i

pθ , 2
i

pθ , 1
iqp , 2

iqp represent the fluid 
pressure in the two chamber pairs, θ , q and S, d are 
section area and the diameter of the cylinder, 
respectively (Figure 5). 
 

Figure 5. The cylinder driving 
 
The pressure control of the chambers is described by 
the equations: 
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 ( ) ki

k
i

ki u
dt

dp
a θ

θθ = (22) 

 ( ) qki

k
qi

ki u
dt

dp
qb = , 2,1=k ; Ni ,,2,1 …= (23) 

where kia , kib are the coefficients determined by the 
fluid parameters and the geometry of the chambers and 

( ) 00 >kia , ( ) 00 >kib , ( )ΩΓ∈q,θ .

4. CONTROL PROBLEM 

The tentacle arm control problem of a grasping 
function by coiling is generated from two 
subproblems: the position control of the arm around 
the object-load and the force control of grasping. 

4.1. Position control 

We consider that the initial state of the system is given 
by 

 ( ) [ ]Tqs 000 ,,0 θωω == (24) 

 ( ) [ ]Ts 0,0,00 ==νν (25) 

where ( )s,00 θθ = , ( )sqq ,00 = , [ ]Ls ,0∈ ,
corresponding to the initial position of the arm defined 
by the curve 0C

( ) ( )( )sqsC 000 ,: θ , [ ]Ls ,0∈ (26) 

The desired point in ( )ΩΓ is represent by a desired 
position of the arm, the curve dC that coils the load, 

 [ ]Tddd q,θω = , [ ]Td 0,0=ν (27) 

 ( ) ( )( )sqsC ddd ,: θ , [ ]Ls ,0∈ (28) 

In a grasping function by coiling, only the last m
elements ( )Nm < are used. Let gl be the active 
grasping length, 

 ∑
=

=
n

mi
ig ll (29) 

Let bC be the curve defines the boundary of the load 
and we denote by bO the origin of the coiling 
function, when bO is the intersection between the 
tangent from origin O and the curve LC (Figure 6.b). 
This curve can be expressed using the coordinates 
( ) ( )ΩΓ∈q,θ .

( ) ( )( )∗∗ sqsC bbb ,: θ , [ ]bLs ,0∈∗ (30) 

where bL is the length of the coiling measured on the 

boundary bC and ∗+−= slLs g .

Figure 6. (a) The grasping position; (b) The grasping 
parameters 

 
We define the position error by ( )te p

( ) ( ) ( )( ) ( ) ( )( )( )∫
−

−+−=
L

lL
bbp

g

dssqtsqstste ,, θθ (31) 

It is difficult to measure practically the angles θ , q
for all [ ]Ls ,0∈ . These angles can be evaluated or 
measured at the terminal point of each element. In this 
case, the relation (31) becomes 

 ( ) ( )( ) ( )( )( )∑
=

−+−=
N

mi
biibiip qtqtte θθ (32) 

The error can also be expressed with respect to the 
global desired position dC

( ) ( )( ) ( )( )( )∑
=

−+−=
N

i
diidiip qtqtte

1

θθ (33) 

 ( ) ( ) ( )( )∑
=

+=
N

i
qiip tetete

1
θ (34) 

The position control of the arm means the motion 
control from the initial position 0C to the desired 
position bC in order to minimize the error. 
Theorem 1. The closed-loop control system of the 
position (16), (17), (22), (23) is stable if the fluid 
pressure control laws in the chambers of the elements 
are given by: 

 ( ) ( ) ( ) ( )( )tektekatu i
j
ii

j
ijiji θθθθθ θ ��� 21 +−= (35) 

 ( ) ( ) ( ) ( )( )tektekbtu qi
j

qiqi
j

qijiqji ��� 21 +−= θ , (36) 

where 2,1=j ; Ni ,,2,1 …= , with initial conditions: 

 ( ) ( ) ( ) ( )000 211121
iiiii ekkpp θθθθθ −=− (37) 

 ( ) ( ) ( ) ( )000 211121
qiqiqiqiqi ekkpp −=− (38) 
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 ( ) 00 =ieθ� , ( ) 00 =qie� (39) 

and the coefficients ikθ , qik , mn
ikθ , mn

qik are positive 
and verify the conditions 

 ( )2111

8 iii kkSdk θθθ −= , ( )2111

8 qiqiqi kkSdk −= (40) 

 2111
ii kk θθ > ; 2212

ii kk θθ > ; 2111
qiqi kk > ; 2212

qiqi kk > (41) 

4.2. Force control 

The grasping by coiling of the continuum terminal 
elements offers a very good solution to remove the 
uncertainty connected to the geometry of the contact 
surface. The contact between an element and the load 
is presented in Figure 7. It is assumed that the grasping 
is determined by the chambers in the θ -plane. 
 

Figure 7. The grasping force 
 
The relation between the fluid pressure and the 
grasping forces can be inferred for a steady state as: 

 ( ) ( ) ( ) ( ) ( )
8

~~~~
21

0 00
2

2 dSppdssTsTsfds
s

sk
l s

T
l

−=+
∂

∂
∫ ∫∫ θθ

θ (42) 

where 

 







−

=
01
10~T ; ( ) 








=

θ
θ

θ
sin
cos~ s (43) 

and ( )sf is the orthogonal force on the curve bC ,
( )sf is ( )sFθ in θ -plane and ( )sFq in q-plane, 

respectively. 
A spatial discretization 121 ,,, lsss … is introduced and 

ii ss −=∆ +1 , with ( )ii sθθ = and 1,,2,1 li …= . For 
small variation iθ∆ around the desired position idθ ,
in θ -plane, the dynamic model (16) can be 
approximated by the following discrete model [12]: 

 
( )

( ) ( )eiiidid

didiidiiiii

FfdqH
qHcm

−=−
−∆++∆+∆

,
,,

θ
θθθθθ ���

(44) 

where ∆= Smi ρ , 1,,2,1 li …= , ( )did qH ,θ is a 
nonlinear function defined on the desired position 
( )did q,θ , ( ) 0,, >= diii qcc θν , ( )ΩΓ∈q,θ ,
with ν - the viscosity of the fluid in the chambers. 

 

( ) ( )

( ) ididii

qq

i

diddidiidi

qh
H

qHqH

d
d

θθθ
θ

θθθθ

θθ
∆⋅=∆

∂
∂

≅

≅−∆+

=
=

,

,,,

(45) 

eiF is the external force due to the load. 
The equation (44) becomes, 

 
( )

( ) ( )eiiiididi

idiiii

Ffdqh
qcm

−=∆⋅+
+∆+∆

θθ
θθνθ

,
,, ���

(46) 

The aim of the explicit force control is to exert a 
desired force idF . If the contact with the load is 
modeled as a linear spring with constant stiffness Lk ,
the environment force can be modeled as: 

 iLei kF θ∆= (47) 

The error of the force control may be introduced in the 
form of 

 idiefi FFe −= (48) 

It may be easily shown that the equation (46) becomes 

 idi
i

iifii
i

fi
L

i
fi

L

i Fd
k
h

fded
k
h

e
k
c

e
k
m









+−=








+++ ��� (49) 

Theorem 2. The closed force control system is 
asymptotic stable if the control law is 

 ( ) ( )( )idiLifiiiLi
iL

i Fdkhemdkh
dk

f −−++= 21 σ (50) 

 σii mc > (51) 

In this paper, the force error control may be improved 
by using the Direct Sliding Mode Control [12].  
Proposition. The DSMC control is ensured if the 
coefficients ic of the control system verify the 
conditions: 

 ( )Liiii kdhmc +> 42 (52) 

The condition (52) can be verified by increasing the 
viscosity of ER fluid. The force control system is 
developed into two steps. In the first step, according to 
Theorem 2, the trajectory of the error is controlled by 
the force if . In the second step, the viscosity of the 
fluid is increased and the trajectory switches directly 
toward the origin on the switching line. The block 
scheme of the force control is presented in Figure 8.  
 

Figure 8. The force control system 
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5. SIMULATION 

A hyperredundant manipulator with eight elements is 
considered. The mechanical parameters are: linear 
density mkg2.2=ρ and the length of one element is 

ml 05.0= . The initial position is the defined by 

( ) 





 =

2
: 00

πθ sC . A discretisation for each element 

with an increment 3l=∆ is introduced.  
A force control for the grasping terminals is simulated. 
The phase portrait of the force error is presented in 
Figure 9. First, the control (26), (27) is used and then, 
when the trajectory penetrates the switching line the 
viscosity is increased for a damping coefficient 

15.1=ξ .
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Figure 9. The force control phase portrait 

6. CONCLUSION 

The paper treats the control problem of a tentacle robot 
arm with continuum elements that performs the coil 
function of grasping. The structure of the arm is given 
by flexible composite materials in conjunction with 
active-controllable electro-rheological fluids. The 
dynamic model of the system is inferred by using 
Lagrange equations developed for infinite dimensional 
systems. 
The grasping problem comprises in two subproblems: 
the position control and the force control. The 
difficulties determined by the complexity of the non-
linear integral-differential equations are avoided by 
using a very basic energy relationship of this system 
and energy-based control laws are introduced for the 
position control problem. The force control is obtained 
by using the DSMC method in which the evolution of 
the system on the switching line is controlled by the 
ER fluid viscosity. Numerical simulation is presented. 
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