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Abstract −−−− In this section we consider systems with 
distributed delay in state and command and saturation 
in command, and using a transformation given in [5], 
[6], the initial system is transformed in one whithout 
dealy but which contain saturation in command. The 
investigations are continuing using some results from 
the study of systems with saturation in command [2], 
[3]. In this manner, using the transformation relation 
between the state of the initial system with delay and 
the state of the transformed system without delay, we 
can formulate some results regarding the stabilization 
of the initial system with distributed delay and 
saturation in command and distributed delay in state.  
The Propositions 1..6 from this paper are personal 
results of the author. 
 
Keywords: distributed delay in command and state, 
stabilization, saturation in command. 

1. INTRODUCTION 

A general method for transformation of systems with 
delay in command and state is presented in [5] and [6]. 
In those paper are demonstrate how many problems of 
stabilization, controllability can be dealt with by 
addressing the reduced( associate) systems. The 
reduction provides, therefore, a strong tool for 
manipulating systems with delays in state and control.  
In [2] and [3] are presented some necessary and 
sufficient conditions for global asymptotic stability of 
linear systems with bounded control. 
Starting from these, although in practice, control 
bounds and delayed are usually ignored in the initial 
design, the aim of this paper is to find under what 
conditions will the equilibrium of a system with 
distributed delay in state and command and saturation 
in command, remain globally asymptotically stable. 
In this paper are presented results about stability, 
instability and a estimation of stability region for the 
considered systems. The Propositions 1..6 from this 
paper are personal results of the author. Similar results 
about systems with delay in command and saturation 
in command, systems with multiple delay in command 
and saturation in command, systems with delay in state 
and command and saturation in command and systems 
with multiple delay in state and command and 
saturation in command, are presented by author in [7]. 
 

2.  MAIN RESULTS 

We consider the system in the following form : 

∫ ∫
− −

+++=
0 0

)()()()()(
h h

s tudtxdtx θθβθθα� (1) 

where nx ℜ∈  is the state, ,m
su ℜ∈  

( ) ( ) 0,,]0,[,,]0,[ >ℜ−∈ℜ−∈ hhBVhBV nxmnxn βα is 

the delay in command and state. ( )21,]0,[ xnnhBV ℜ−  
denotes the class of integrable 21 nn × matrix-valued 
functions of bounded variations. The initial conditions 
are given by : 

;)()( 0 θθ xx = ]0,[)()( 0 hforuu ss −∈= θθθ ;

( ) ,,]0,[0
nhCx ℜ−∈ ( )m

s hCu ℜ−∈ ,]0,[0 .
Let consider the monovariabil case 1=m .The 
command contain saturation and is in the general form  

 )())(())(()( tKxtxtKxsattus µ−=−= (2) 
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limu is the maxim value of command,  limuus ≤ , K
is a feedback matrix. 
Let the system (1), and use the state transformation : 

∫ ∫∫ ∫
− +

−+

− +

−+ ++=
0

)(
0

)( )()()()()()(
h

t

t

s
tA

h

t

t

tA dudedxdetxty
θ

τθ

θ

τθ ττθβττθα (4) 

where A is a solution of the matrix equation (we 
suppouse that exist a solution) : 

∫
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A deA θαθ (5) 

The associated system for (1) is : 
)()()( tButAyty +=� (6) 

where : ∫
−
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A deB θβθ (7) 

We obtain the associated system (6) if we note : 
θ+= ts , and comupting y� :
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Using (5) and (7) we can write: 
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Observing that the sum formed by the last integral of 
each up terms is equal ))()(( txtyA − , using (4),(5) 
and (7), making the replacement up, we obtain the 
associate system (6). 
We suppose that the comand of (1) contain saturation 
and is in the form : 
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where the matrix A is given by (5) and : 
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limu is the maxim value of command,  limuus ≤ , K

is a feedback matrix. We reconsider the 
monovariable associate system (6) :  

)()()( tButAyty s+=� , (10) 
where ny ℜ∈ is the state, BA, are matrices of 
appropriate dimensions. The command of this system 
contain saturation and is in the form :  

)())(()()( tKytyKysattus µ−=−= , (11) 

where 
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limu is the maxim value of command,  limuus ≤ , K
is a feedback matrix. 
Observation 1 : In [5], [6] is claimed that : if 

)()()( tyFtu ⋅= is a stabilyzing law for  system (10), 
then the next command law : 
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is stabilyzing for the system (1), under the condition 
that all unstable eigenvalues of system (1) are 
contained in the spectrum of the matrix A given by 
(5). 
Definition 1 : Let nxn

iA ℜ∈ . A set  },...,{ 1 kAA is 
simultaneously P Liapunov stable , if there exists a 

nxnP ℜ∈ , pozitive  definite, such that 
kiPAPA i

T
i ,...,1,0 =<+ . [2] 

With these we claim : 
Proposition 1 : The null solution of closed loop 
system (1), (8) and (9) where 1=m is globally 
asimptotically stable if there exist K and nxnP ℜ∈  
pozitive definite, such that the set 
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Liapunov stable, namely  : 0<+ PAPAT and  
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under the condition that all unstable eigenvalues of 
system (1) are contained in the spectrum of the matrix 
A given by (5). 

Proof : We use a result from [2], given by  
Theorem 1 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
there exist K and nxnP ℜ∈ , pozitive definite, such 
that the set { }BKAA −, is simultaneously P Liapunov 
stable, namely : 

0<+ PAPAT and 0)()( <−+− BKAPPBKA T

Proof of Theorem 1: Let consider the Lyapunov 
function  :  PyyyV T=)( , and the matrix 0>P who 
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satisfy the hypothesis. With these we obtain : 
 0)( <−=+ QyyyPAPAy TTT and 

0))()(( <+−=−+− MyyQyyyBKAPPBKAy TTTT

where 0>Q and  )( PBKPBKM TT+−= .

Then one obtains QyyMyy TT < . As ]1,0()( ∈yµ it 
follows that : 

≤+−<+−= QyyyQyyMyyyQyyyV TTTT )()()( µµ�

0=+−≤ QyyQyy TT , and the proof of  Theorem 1 is 
finished.                                      □
Applying the Theorem 1 on the system (10), where A
and B are given by (5) and (7) respectively, using the 
Observation 1 where KyF )()( µ−=⋅ and y is given 
by (4), then the proof of Proposition 1 is finished.      □
Definition 2 : Two diagonalizable matrices 

nxnBA ℜ∈, , are said to be simultaneously 
diagonalizable if there exists a single non-singular 
matrix N such that ANN 1− and BNN 1− are both 
diagonal.   [2] 
Lema 1 : Let A and B be diagonalizable from nxnℜ .
Then A and B are simultaneously diagonalizable if 
and only if  A and B commute under multiplication, 
namely BAAB = . [2] 
Proposition 2 : The null solution of closed loop 
system (1), (8) and (9) where 1=m is globally 
asimptotically stable under the condition that all 
unstable eigenvalues of system (1) are contained in the 
spectrum of the matrix A given by (5) and if are true: 

a) the matrix A is exponentially stable and 
diagonalizable 

b) the matrix KdeA
h

A ))((
0

∫
−

− θβθ is exponentially 

stable and diagonalizable 

c) the matrices A and Kde
h

A ))((
0

∫
−

θβθ commute 

under multiplication 
Proof : We use a result from [2], given by 
Theorem 2 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
are true : 

a) the open-loop system A is exponentially stable 
and diagonalizable 

b) the matrix BKA − is exponentially stable and 
diagonalizable 

c) the matrices A and BK commute under 
multiplication     
Proof of Theorem 2 : Since A and BK commute, 
then A and BKA − commute. By assumption, A
and BKA − are also diagonalizable. Thus from Lema 
1.1, A and BKA − are simultaneously 
diagonalizable. Thus, there exists a coordinate 
transformation T such that A and BKA − are both 

diagonal with respect to a new coordinate Tyz = . Let 

BKAA −= and let AA ΛΛ , be diagonal matrices 

where : 1−=Λ TATA , 1)( −−=Λ TBKATA . Then we 

proof that TTP T= satisfies the conditions of 
Theorem 1. 

T
A TATTAT )(2 11 −− +=Λ , and multiplying the left 

side by TT and the right side by T , we obtain : 
=+=+=Λ −− TTATATTTATTATTTT TTTTT

A
T ))((2 11

PAPA T+= where 0>= TTP T and 0<Λ TT A
T

since T is non-singular.  
Similary  : TTAATTTT TTT

A
T +=Λ2 . Thus, P

simultaneously satisfies 0<+ PAPAT and  
0<+ APPAT . By Theorem 1, the proof of  Theorem 

2 is finished.                  □
Applying the Theorem 2 on the system (10), where A
and B are given by (5) and (7) respectively, using the 
Observation 1 where KyF )()( µ−=⋅ and y is given 
by (4), then the proof of Proposition 2 is finished.      □
A analog result is given by : 
Proposition 3 : The null solution of closed loop 
system (1), (8) and (9) where 1=m is globally 
asimptotically stable under the condition that all 
unstable eigenvalues of system (1) are contained in the 
spectrum of the matrix A given by (5) and if are true: 

a) A and KdeA
h

A ))((
0

∫
−

− θβθ are exponentaially 

stable 

b) KdeA
h

A ))((
0

∫
−

− θβθ is diagonalizable 

c) A
�

commutes with P , where A
�

is the diagonal 

form of KdeA
h

A ))((
0

∫
−

− θβθ , and 0>P solves : 

0<+ PAPAT .
Proof  : We use a result from [2], given by 
Theorem 3 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
are true : 

a) A and BKA − are exponentaially stable 
b) BKA − is diagonalizable 
c) A
�

commutes with P , where A
�

is the diagonal 
form of BKA − , and 0>P solves : 0<+ PAPAT .
Proof of Theorem 3 : Let 1)( −−= TBKATA

�
where 

T diagonalizes BKA − and A
�

is diagonal in the new 
coordinate Txz = .
Also let 1−= TATA . Since A is exponentially stable, 
there exists 0>P such that 0<+ APPAT .



141

Since 0<A
�

and 0>P , all eigenvalues of PA
�

are 
less than zero. Also, by assumption, APPA

��
= ,

AAT ��
= wich implies that 0<+ APPAT ��

. By 
Theorem 1, the proof of  Theorem 3 is  finished.        □
Applying the Theorem 3 on the system (10), where A
and B are given by (5) and (7) respectively, using the 
Observation 1 where KyF )()( µ−=⋅ and y is given 
by (4), then the proof of Proposition 3 is finished.      □
For multivariable systems we present the next result : 
Proposition 4 : We  consider  the  system  (1)  in  the  
multivariable form : 

∫ ∫
− −

+++=
0 0

)()()()()(
h h

s tudtxdtx θθβθθα� (14) 

where nx ℜ∈  is the state,  
( ) ( ) 0,,]0,[,,]0,[, >ℜ−∈ℜ−∈ℜ∈ hhBVhBVu nxmnxnm

s βα
is the delay in command and state. 

( )21,]0,[ xnnhBV ℜ−  denotes the class of integrable   

21 nn × matrix-valued functions of bounded variations. 
The initial conditions are given by 

;)()( 0 θθ xx = ]0,[)()( 0 hforuu ss −∈= θθθ ; We 
suppose that all unstable eigenvalues of system (14) 

are contain ed in the spectrum of the matrix A given 

by (5). We note *
jB the j th column of ∫

−

0

)(
h

A de θβθ

and we assume that A is asymptotically stable. The 
inputs are [ ]Tsmss uuu ,,1 …= , jumax  is the 

maxim value of the component  j th  of command  

namely mjuu jsj ,...,1,max =< . The initial conditions 

of commands are given by a set of functions )(0 ⋅jsu

definited on the  interval ]0,[ h− and bounded by 

jumax  . The initial conditions of state are given by a 

functions )(0 ⋅x definited on the interval ]0,[ h− , where 
},...,max{ 1 khhh = . The components of command are 

in the form :                                                             (15) 
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If 0>P solves 0<+ PAPAT , then the null solution 
of closed loop system (14), (15) and (16) is globally 
asimptotically stable.  
Proof  : We use a result from [2], given by  
Theorem 4. We consider the multivariable system in 
the following form: 

∑
=

+=+=
m

i
siis uBAyBuAyy

1

� , (17) 

where : nxnm
s

n Auy ℜ∈ℜ∈ℜ∈ ,, is asymptotically 

stable, nxmB ℜ∈ , iB is the i th column of B . The 

inputs are [ ]Tsmss uuu ,,1 …= , iumax  is the maxim 
value of the component i th  of command  namely 

miuu isi ,...,1,max =< .

The command vector )( PyBsatu T
s −= , have the 

components in form : 
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T
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T
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T
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uPyBPyB

uPyBPyB
u
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max

;

;

µ
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where 
PyB

u
T
i

i
i

max=µ , mi ,...,1= , (19) 

If 0>P solves 0<+ PAPAT , then the null solution 
of closed loop system (17), (18) and (19) is globally 
asimptotically stable.    
Proof of Theorem 4 : We can rewrite the command 
vector : PyMBu T

s −= , where : 

]1,0(,),( ∈ℜ∈= i
mxm

i MdiagM ββ and 
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<
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i
T
ii

i
T
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i uPyBif
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µ
β

Let consider the Lyapunov function : 
PyyyV T=)( and computing )(yV� , we obtain : 

=−+−= yPBMBAPPPBMBAyyV TTTT )]()[()(�

0)2( <−+= yPPBMBPAPAy TTT ,since 

0≥PPBMBT and 0<+ PAPAT .
Thus the proof of  Theorem 4 is  finished.                   □
Applying the Theorem 4 on the system (10) considered 
now multivariable, where  A and B are given by (5) 
and (7) respectively, using the Observation 1 where 

PMBF T−=⋅)( and y is given by (4), then the proof 
of Proposition 4 is finished.      □
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The next two propositions are concerning on the open 
loop unstable monovariable linear systems. 
Proposition 5 : We consider the system (1) and A is 
given by (5). Suppose A is invertible and has a single 
unstable eigenvalue λ .

Let lim

0
1 ))(( udeAx

h

A
eq ∫

−

−±= θβθ denote the 

equilibrium points of the saturated system when the 
input saturates at limuus −= and limuus =
respectively.  Then, no feedback matrix K where 

limuKxeq ≥ , can globally stabilize the null solution of 

closed loop system (1), (8) and (9). 
Proof  : We use a result from [2], given by 
Theorem 5 : We consider the system (10) and suppose 
A is invertible and has a single unstable eigenvalue 
λ . Let lim

1BuAyeq
−±= denote the equilibrium points 

of the saturated system when the input saturates at 
limuus −= and limuus = respectively.  Then, no 

feedback matrix K where limuKyeq ≥ , can globally 

stabilize the null solution of closed loop system (10), 
(11) and (12).      
Proof of Theorem 5 : To show that the origin is not 
globally asymptotically stable, it is sufficient to find 
some initial conditions ny ℜ∈0 wich cannot be 
driven to the origin with the feedback :  

)())(()()( tKytyKysattus µ−=−= where K satisfy 

limuKyeq ≥ . Let )( eqyEλ be the eigenspace 

corresponding to the unstable eigenvalue λ of the 
open-loop system A where : 

{ })()(:)( eqeq
n

eq yyyyAyyE −=−ℜ∈= λλ (20) 
We will show that some initial conditions on the 
eigenspace λE cannot be driven to the origin with the 
feedback )()( Kysattus −= .
Note that limuKy = depicts the saturation boundaries. 
Now consider the case when saturation occurs with 

limuus −= . Then, the dynamics of the saturated 
system are given by : 

lim)()( ButAyty −=� , (21) 
and the equilibrium point under saturation by : 

lim
1BuAyeq

−= (22) 

Let { }lim: uKyyD ≥= . The assumption 

limuKyeq ≥ implies Dyeq ∈ . Then the trajectory 

)(ty for the saturated system when )(0 eqyEy λ∈ is 
given by : 

eqeq
t yyyety +−= )()( 0

λ , (23) 

Moreover, since )( eqyEλ is the eigenspace, 

DyEty eq ∩)()( λ∈ provided the system remains 

saturated at limuus −= . We will show that some initial 
conditions DEy ∩λ∈0 exist where )(ty never 
leaves the saturated region D so that )(ty becomes 
unbounded. 
Now, λE is either parallel to or intersects limuKy = .
Because limuKy = forms an 1−n dimensional 
surface and )( eqyEλ a line, the intersection is a point. 

Suppose )( eqyEλ and limuKy = are parallel. Since 

Dyeq ∈ , )( eqyEλ lies entirely in the saturated 
region. This means that :  

0),()(),(0 ≥∀∈∈∀ tyEtyyEy eqeq λλ . Since  

)( eqyEλ is an unstable eigenspace, )(ty will become 
unbounded. 
Now suppose )( eqyEλ and limuKy = intersect. Let 

*v denote the point of intersection. Then 
DyEy eq ∩)(0 λ∈∀ such that ( )eqyvy ,max *

0 ≥ ,

0,)()( ≥∈ tDyEty eq ∩λ and )(ty will become 
unbounded. 
The same argument can be repeated for saturation 
occurring at limuus = . Thus, there exist initial 
conditions on the eigenspace corresponding to the 
unstable eigenvalue which becomes unbounded. 
Hence, the origin is not globally asymptotically stable 
under any linear time invariant state feedback. Thus 
the proof of  Theorem 5 is  finished.               □
Applying the Theorem 5 on the system (10), where A
and B are given by (5) and (7) respectively, and using 
the transformation relation given by (4), then the proof 
of Proposition 5 is finished.                 □
The next proposition examines the region of stability 
for an open loop unstable system under control 
constraints and delay in state and control. 
Proposition 6 : We consider the system (1) where  A
is given by (5) and 1=m .
Suppose the following are true : 

a) matrix A is unstable. 

b) matrix KdeA
h

A ))((
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∫
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− θβθ is exponentially 
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, +ℜ∈d and 
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Then *
*dB is an exponentially stable region for the 

closed loop system  (1), (8) and (9), where *d is the 
largest number such that **

* HBd ⊂ .
Proof  : We use a result from [2], given by 
Theorem 6 : We consider the  system (10) and 
suppose the following are true : 

a) matrix A is unstable. 
b) matrix BKA − is exponentially stable.  

Let { }dPyyyB T
d ≤= : , +ℜ∈d and  
{ }lim: uKyyH ≤= , where 0>P is a solution to  

0)()( <−+− BKAPPBKA T . Then *d
B is an 

exponentially stable region for the closed loop system  
(54), (55) and (56), where *d is the largest number 
such that HB

d
⊂* .

Proof of Theorem 6 : Since BKA − is exponentially 
stable, there exist 0>P , such that : 

0)()( <−+− BKAPPBKA T . Let consider the 

Lyapunov function : PyyyV T=)( , and computing 

)(yV� we obtain : 

0)]()[()( <−+−= yBKAPPBKAyyV TT� .

In addition, *d
B is the largest set wich lies within the 

unsaturated region H . Thus *d
By ∈∀ , PyyT

decreases and hence 0→y exponentially. Thus the 
proof of  Theorem 6 is  finished.                 
Applying the Theorem 6 on the system (10), where A
and B are given by (5) and (7) respectively, and using 
the transformation relation given by (4), then the proof 
of Proposition 6 is finished.                  

3. CONCLUSIONS 

I In this paper we consider systems with distributed 
delay in state and command and saturation in 
command, and using a transformation given in [5], 
the initial system is transformed in one whithout 
dealy but which contain saturation in command. The 

investigations are continuing using some results from 
the study of systems with saturation in command [2], 
[3]. In this manner, using the transformation relation 
between the state of the initial system with delay and 
the state of the transformed system without delay, we 
can formulate some results regarding the stabilization 
of the initial system with distributrd delay in state 
and command and saturation in command. 
Are presented results about stability, instability and a 
estimation of stability region for the considered 
systems. The Propositions 1..6 from this paper are 
personal results of the author. Similar results about 
systems with delay in command and saturation in 
command, systems with multiple delay in command 
and saturation in command, systems with delay in 
state and command and saturation in command and 
systems with multiple delay in state and command 
and saturation in command, are presented by author 
in [7]. 
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