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Abstract −−−− The paper deals with a controller for the 
transient aircraft turbo-engines’ regimes (accele-
ration/deceleration, atmospheric disturbances, unstable 
burning), which is meant to assure the engine’s over-
speed and over-heating avoiding during its operating. 
One has elaborate the non-linear mathematical model, 
based on the motion equations for each system’s part; 
using a linearization method, one has also obtained the 
linear and the non-dimensional equation system form, 
as well as a simplified mathematical model form, the 
transfer function and some functional block diagrams 
(block diagrams with transfer functions), which are 
useful for the controller’s studying and pre-design.  

Keywords: controller, turbo-engine, over-heating, 
over-speed, transient, fuel, air  flow rate. 

1. INTRODUCTION 

The engine’s dynamic regimes controllers are based 
on the fuel flow rate’s control during the transient 
operating regimes (acceleration/deceleration), in 
order to ensure for the engine’s combustor the co-
relation between the fuel injection and the 
compressor’s air delivery. The fuel injection velocity 
is higher then the air’s one, because of the engine’s 
turbo-compressor’s spool inertia, so the dynamic 
regime’s control must be based on the fuel flow 
rate’s control with respect to one of the spool’s 
characteristic parameters (as the rotation speed, the 
air flow rate or the compressor’s pressure ratio are), 
in order to assure the engine’s over-speed and over-
heating avoiding during its operating [3,6,8].  
Such a controller, with respect to the compressor’s 
pressure ratio, is presented in figure 1[5,6]. The 
controller’s action above the engine’s operating is an 
indirect one, because of its using as fuel flow rate 
limiter, acting on the fuel pump’s controller, not on the 
injectors or on the injection dosing element(s). Its 
particularity is the presence of a barometric correction 
system, which assures an appropriate fuel flow rate 
control for any flight regime, in a very large range of 
flight altitudes and speeds. The controller’s parts are: 
1-main slide-valve; 2-elastic membrane; 3-main 
spring; 4-profiled needle; 5-drossel; 6-adjustment 
block’s elastic membrane; 7-adjustment block’s 
spring; 8-barometric correction block’s spring; 9- 
barometric correction block’s lever; 10- barometric 

correction block’s rod; 11-sylphon block; 12-drossel; 
13- barometric correction block’s adjustment screw; 
14-controller’s case; 15-pressure intakes; 16-spring’s 
elastic adjustment screw; 17-actuactor’s connection. 
The above described controller can be integrated into 
a rotation speed control system, as the ones in [4] and 
[7], acting by discharging the actuator’s active 
chambers (through the 17 connector, by the main 
slide-valve 3), under the combined pressure forces 
( BA pp − , injection pressure ip ), respectively 7 and 
8 springs’ elastic forces action. The pressures in A 
and B chambers are depending on the compressor’s 
intake and exhaust pressure, that means on its 
pressure ratio, so the slide-valve’s positioning is with 
respect to this parameter, as well as the actuator’s 
active chamber’s discharging, so the fuel injection 
velocity “follows” the air flow modifying velocity. 
The “corrected” (reference) pressure Ap is realized 
by the R-chamber system (membrane 6, spring 7, 
profiled needle 8 and adjustment screw 16).   
The barometric corrector is meant to adjust the 
fuel/air flow rate co-ordination with respect to the 
flight regime (flight altitude) that means the engine’s 
time response at different flight regimes (altitudes 
and speeds).  
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Figure 1. Fuel flow rate controller with indirect action, 
with respect to the compressor’s pressure ratio 



100

2. SYSTEM’S MATHEMATICAL MODEL 

2.1. Non-linear equation system 

The non-linear mathematical model is built of the 
motion equation of the controller’s main parts, as 
follows: 
1) profiled needle’s positioning equation:
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where 6S is the membrane’s surface area, 
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1 , pp pressure before/after the compressor, 4m -

needle 4 mass, −ξ viscous friction co-efficient, −7k
spring’s (7) elastic constant, −u needle’s dis-
placement, −w adjustment (screw’s displacement); 

2) A pressure chamber’s equation:
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where d is the variable (with respect to the u needle’s 
displacement) diameter of the connection between 
the two pressure chambers R and A; −5,µµA flow 
rate co-efficient; −5,dd A drossel’s diameters; −ρ
fuel’s density; −β fuel’s isothermic compressibility 
co-efficient; Ap -A chamber’s pressure; −0, AA VV A
chamber’s current / initial volume; −1S membrane’s 
(1) surface; −ry membrane’s center’s displacement; 

3) slide-valve’s (3) displacement: 
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where −3S slide-valve’s frontal area’s surface; ip -
fuel’s injection pressure; −3m slide-valve’s mass; 

−7k spring’s (7) elastic constant; 
4) barometric corrector’s equations: 
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where v -corrector’s rod displacement, 
−mp sylphon’s internal pressure; −Hp atmospheric 

pressure at the H flight altitude; −21, ll lever’s arms’ 
length; 1v - spring extremity’s displacement; 

5) corrected slide-valve’s motion equation: 
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All of these equations represent the controller’s non-
linear mathematical model. 

2.2. Linearised mathematical model 

The non-linear equation system can be linearised, 
using the small disturbances hypothesis, close to a 
completely determined steady state operating regime. 
One assumes that a generic variable X has the form  
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where 0X is the steady state value and X∆ is the 
deviation; neglecting the terms which contains 
( ) 2, ≥∆ nX n , it remains 

 XXX ∆+= 0 . (13) 

So, expressing each variable of the non-linear system 
as in Eq. (13), one obtains 
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For the above equation system one has used the 
following annotations:  
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The equations (14)…(18), with the annotations (19), 
are the controller’s linear mathematical model. 

2.3. System’s non-dimensional mathematical model 
and the block diagram with transfer functions  

Formally, one can apply the Laplace transformer to 
the above determined equation system. One can also 
obtain its non-linear form, using the formal 
transforming  
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where X∆ and 0X have the same significance as in 

(13) and X is the non-dimensional deviation. 
So, the non-dimensional mathematical model has the 
following form: 

 ( ) ( ) ( ) ( )+++=− s1ssss 4
22

4
*
11

*
22 uTTpkpk pp ξ

( )swkw+ , (21) 

 ( ) ( ) ( )s1s)s(s)s(s 1
*
22 AAryuA pTyukpk +=+− τ , ( 22) 

 ( ) ( )ss Hm pkv −= , (23) 

 ( ) ( )ss1 vkv vv= , (24) 

 ( ) ( ) ( ) ( ) =−+− ssss 11
*
11 vkpkpkpk vyAApii

( ) ( )s1ss 3
22

3 ryTT ++= ξ , (25) 

where 
07

*
206

2 uk
pS

k p = ;
07

*
106

1 uk
pS

k p = ;
7

4
4 k

mT = ;

7
4 k

T ξ
ξ = ;

0

0

w
u

kw = ; ( ) 05

*
2

2
20

AApA

p
A pkk

pk
k

+
= ;

101

02

vl
vl

kvv = ; ( ) 05

0

AApA

Au
u pkk

uk
k

+
= ;

ApA

A
A kk

V
T

5

0

+
=

β
;

( ) 05

01

AApA
y pkk

yS
+

=τ ; ( ) 082

03

r

i
i ykk

pSk
+

= ;

( ) 082

01

r

A
Ap ykk

pSk
+

= ;
0

0

v
pK

k Hm
m −= ;

82

32
3 kk

m
T

+
= ;

82
3 kk

T
+

=
ξ

ξ ; ( ) 082

*
101

1
r

y ykk
pSk

+
= ; ( ) 082

03

r

i
i ykk

pSk
+

= ;

( ) 082

108
1

r
v ykk

vkk
+

= . (26) 

Based on the above determined equation system one 
has built the block diagram with transfer functions, as 
the figure 2 shows. 

3. SYSTEM’S SIMPLIFIED MATHEMATICAL 
MODEL AND THE TRANSFER FUNCTIONS 

In order to operate more efficient with the 
mathematical model, one can make some observation 
which can simplify its form. So, one can neglect the 
fuel’s compressibility, ( )0=β , the viscous friction, 

0=ξ and the inertial effects; consequently one 
obtains 04433 ===== ξξ TTTTTA .
The system’s new simplified form becomes:  
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where the co-efficient in the Eq. (31) right member  

 

_

yr

p1*

k1p

ku

Σkw

Σ

u

pi

_

_

w

v

+

+
krs

_

+

+

+

k2p

T4s
2+Tξ4s+1

1
2

Σk1y

ki

T3s2+Tξ3s+1
1

2

TAs+1
1

kAp

τys

yr

k1v kvv kmp
v1

p2
*

pH

pA

_

Figure 2. Controller’s block diagram with transfer 
functions 



102

( )( )ApA
Apyyr kkkk

SkT
582

2
1

++
== τ (32) 

is the controller’s time constant. One can observe 
that, if ,1>Apk it results that yyrT τ> .
System’s transfer functions are: 

- with respect to the compressor’s pressures 
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- with respect to the fuel’s injection pressure 
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- with respect to the flight regime (flight altitude) 
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- with respect to the controller’s adjustment 
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One can observe that all the above described transfer 
functions are defining the controller as a non-peri-
odical first order system.  
Considering that the adjustment is executed before 
the controller’s service entry and the injection 
pressure is practically constant, assured by the 
engine’s fuel control system, the most important 
transfer functions become the ones with respect to the 
compressor’s pressures (air flow rate) and with 
respect to the flight regime. 
The new block diagram with transfer functions is 
presented in figure 3. 

4. SYSTEM’S PRE-DESIGN BASED ON THE 
TRANSFER FUNCTIONS STUDIES 

Analysing the Eq. (32) form, one can observe that the 
amplifying constant (the right member’s numerator) 

must be a positive one, in order to assure the 
controller’s correct operating (actuator’s discharging 
when the compressor’s exhaust pressure diminishes). 
So, assuming that Apk is always positive, it results 
that the condition 

 ( ) 022 >− puAAp kkkk (38) 

leads to 

 puA kkk 22 > , (38’) 

equivalent to 

 
( )20

*
0

*
206

7
)(tg8

dd
dppS

k
A

AA

−

−
>

α
, (38”) 

which represents a condition for the command 
pressure forming block’s spring’s elastic constant 
choice, with respect to the elastic membrane’s 
surface 6S or to the drossel’s diameter Ad . Figure 4 
shows the relation between the spring’s elastic 
constant 7k and the other two variables.  

One can observe that the permitted domain for Ad is 
the one at the right side of the vertical =0d const. 
and the permitted domain for the elastic constant is 
the one above the limit curve (curves) const.6 =S
Another observation can be made, that the spring 
must become more rigid when the drossel’s diameter 
diminishes. 
Concerning the system’s behavior with respect to the 
flight regime, the transfer function (36) numerator 
shows the amplifying constant, also known as the 
system’s sensitivity with respect to the flight regime 
and gives information concerning the system’s 
adaptability 
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above described variation graphical representation. 
The controller’s time constant has the expression in 
Eq. (32), depending on the invariable values 26 ,kS
and 8k , as well as on the co-efficient 5, kk pA  which 
are influenced both by the flight regime and the 
engine’s operating regime. 
If one chooses the drossels diameters as equal 
( )ddd A == 5 , one obtains for the controller’s time 
constant 
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It is obvious that, because of the dependence of the 
compressor’s exhaust pressure on the flight regime 
(altitude H and speed V), ),(*

2
*
2 VHpp = , the 

controller’s time constant depends on the same 
parameters. The above expression has sense because 
always 0

*
20 App > and when the flight regime 

becomes more intense, the pressure *
2p diminishes, 

so the time constant grows and the engine’s time 
response grows too. 
If the springs become more rigid, or the drossels’ 
diameters grow, the time constant diminishes. 
Figure 6 presents the controller’s time constant 
variation versus the main spring elastic constant, 
having the drossel’s (5) diameter as parameter. 

5. CONCLUSION 

One has realized a mathematical description of a fuel 
flow rate controller with indirect action, elaborating 
more forms of its mathematical model and transfer 
functions. Studying the transfer functions, one could 
obtain some relations between the main geometrical 
and functional parameters of the controller, relation 
useful for the controller’s pre-design and/or 
performances (behavior) estimation. 
Concerning the flight behavior, one can observe that 
at low flight altitudes, the controller’s barometric 
corrector is practically inactive, its domain of 
influence being over 3500 - 4000 m. At high flight 
altitudes, where the mechanical compression 

diminishes (pressure ratio *
1

*
2*

p
p

c =π tends to 1) and 

the dynamical compression grows, the corrector 
realizes a supplementary charge of the main spring 
(2) through the charging of the spring (8); therefore, 
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the slide-valves moves back much slower, the 
pump’s actuator’s discharge is longer and, obviously, 
the engine’s rotation speed’s growing is also much 
slower. So, the higher is the flight altitude, the longer 
are the engine’s time responses. 
Obviously, the time response and the controller’s 
time constant is important and necessary to be as 
small as possible, especially for the military aircraft 
engines. 
The time response adjustment could be realized 
through the screw (16) adjustment, which modifies 
the spring (7) charging, or through the drossel’s (5) 
replacing. 
The modern controllers are with indirect action and 
can be assisted, when necessary, by some automatic 
limitation units (for temperature and/or rotation 
speed), which also control the fuel flow rate. 
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