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Abstract −−−− This paper presents a theoretical analysis of 
the effect of Joule heating on the stability of mechanical 
equilibrium and development of electroconvective 
phenomena in liquids with conductivity on the order of 
10-3-10-6 S/m. 
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1. INTRODUCTION 

Ostroumov was apparently the first to indicate Joule 
heating of a liquid as a source of electrohydrodynamic 
(EHD) phenomena in sharply nonuniform fields [1]. 
His "thermal hypothesis" seemed to be confirmed 
experimentally in Petrichenko's studies [2]. 
However, in our view [3] and in the opinion of other 
researchers [4], there is no basis for such confirmation 
in the case of dielectric liquids, which is indicated, 
first of all, by simple quantitative evaluations [3]. 
Furthermore, this hypothesis does not explain 
isothermal electroconvection in uniform fields [3,4], 
when the currents in the whole interelectrode gap are 
so small (< 1 Aµ ) that the thermal hypothesis of Joule 
heating obviously has to be thrown out. Finally, in 
explaining electric wind in dielectric liquids and 
deviations from Ohm's law, the author of [1] himself 
does not make any use of the fact of Joule heating and 
does not fit his conclusions to the hypothesis that was 
expressed. 
In more conductive media, researchers do not risk 
making an allowance for Joule heating, which 
"obscures" EHD phenomena and superimposes 
associated electrochemical processes on them, the 
strongest argument being that, in the final analysis, 
Coulomb forces are determined completely by the 
density of space charges ( )E⋅∇= ερ ~ lEε and 
field strength E , so that the density of these forces 

Eρ ~ lE 2ε . This last formula is the main thing 
limiting the extension of electrohydrodynamics to 
more conductive media, for the greater the liquid's 
conductivity is, the lower the permissible strength of 

the electric field in them is and, it would seem, the 
weaker EHD effects should be. 
In this article, we try to reconsider the existing positions 
in relation to the possibility of manifestation of EHD 
effects in conducting liquids and establish what ought 
to be expected in practice when the appropriate 
experiments are conducted. 

2. COULOMB FORCE IN CONDITIONS OF 
JOULE HEATING 

The appropriate information about the forces acting on 
a liquid in conditions of Joule heating can be drawn 
from the following system of equations: 

0P =⋅+⋅+−∇ gE γρ ; (1) 

022 =+∇ ET σλ ; (2) 
σjE = ; (3) 
0=∇j ; (4) 
( )E⋅∇= ερ ; (5) 
ϕ−∇=E . ( 6) 

From (3)-(5) follows the well-known formula 

τρ ∇⋅= j , (7) 

where σετ = . In the case of Joule heating, as a 
consequence of ( )Tττ = , we have ( ) TdTd ∇=∇ ττ
and from (7) it follows that 

( ) TdTd ∇⋅⋅= τρ j . (8) 

Then the density of Coulomb forces due to the liquid's 
thermal nonuniformity can be determined by the 
expression 

( ) jjfC ⋅∇⋅⋅⋅= T
dT
dτ

σ
1 . (9) 

We can see that, with fixed values of j , in principle, 
by independently raising T∇ we can increase Cf as 
much as we want, even above the values determined 
by the order of magnitude of (~ lE 2ε ).
For liquids such as distilled water, τ ~ 10-100 ms,
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which is much less than the period of commercial-
frequency voltage oscillations. This means that in a 
commercial-frequency field the liquid's charge 
transfer can follow the field, which does not change 
the direction of the force (~ 2j according to (9)). 
This circumstance advantageously distinguishes Joule 
EHD effects from ordinary ones: first of all, there is no 
need for rectifiers, and secondly, an alternating field 
will make it possible to avoid electrochemical 
parasitic phenomena, to a significant extent. 
To evaluate the forces (9), we must first determine the 
order of the liquid's temperature excess over the 
ambient temperature caused by Joule heating.  
According to (2), 

θ ~ ( )
λ
ϕσ 2∇⋅ , (10) 

and the order of Coulomb force is 

cf ~
( )

3

42

ldT
d

⋅

∆⋅
⋅

λ
ϕστ , (11) 

i.e., in contrast to ordinary EHD effects, which are 
determined the quadratic dependence of the force on the 
potential difference ϕ∆ , the Joule EHD effect is 
characterized by a stronger dependence. For example, 
the Joule effect in distilled water is 12 orders higher 
than in purified transformer oil, and the force (11) 
with θ = 10 K in on the order of the buoyancy force 
( θγβgf A = ). This indicates that Joule heating has a 
significant force action on the liquid with a rise in 
conductivity, which is always ignored in the case of 
high-resistance media. 

3. STABILIZATION OF A LIQUID’S HYDRO-
STATIC EQUILIBRIUM BY AN ELECTRIC 
FIELD ON ACCOUNT OF JOULE HEATING 

We will assume that the forces of gravity and a 
vertical electric field act on a layer of liquid. Applying 
the operation rot to equation (1), we get the condition 
of equilibrium in the form [3] 

0=⋅∇+⋅∇ gE γρ , (12) 

which means that the vectors entering into it are 
parallel. In [3], it was shown that if the equality (12) is 
observed, the conditions 0>⋅∇ Eρ and 0>⋅∇ gγ
correspond to a stable equilibrium. Obviously, a 
stronger inequality takes place, which considers the 
joint action of the two fields ( E and g ): 

0>⋅∇+⋅∇ gE γρ , (13) 

where, taking into account (4) ( constj = ) and (7), 

τσρ 22∇=⋅∇ EE . (14) 

Thus, the condition of stability as applied to an 
electric field is 

02 >∇ τ , (15) 

whatever the nature of the nonuniformities may be. 
In our case, 

( ) 022
2

2
2 >∇⋅+∇⋅=∇ T

dT
dT

dT
d τττ , (16) 

or, according to (2), 

( ) 0
2

2
2

2
>⋅−∇⋅

∂
∂

λ
σττ E

dT
dT

T
. (17) 

For liquids in which 0<dTdτ and 022 >dTd τ ,
the electric field will play a stabilizing role, 
regardless of the type of uniform boundary 
conditions. 
Taking into account the gravitational field, and also (14) 
and (16), the condition of stability (13) has the form 

042
1

22
2 >++ λσαγβσα EgAAE , (18) 

where 

;1;;1 2

2

2 dT
d

dT

d
dT
d γ

γ
βτατα ⋅−≡≡−≡

TA ∇≡⋅≡ kA . (19) 

In the absence of an electric field, A = const [6]. In the 
general case, A is a function of the coordinates, which 
also depends on the boundary conditions. However, no 
matter what this function is, if the discriminant on the 
left side of (18) in relation to A is negative, then the 
equilibrium will be absolutely stable. From this, it 
follows that there is a critical value of the field 
strength crE above which ( )crEE > complete 
mechanical equilibrium sets in: 

( ) 6
13

21
222 4 σααβλγ gEcr ≡ , if 02 >α ; (20) 

( ) 4
12

1σαλβγ AgEcr −≡ , if 02 =α , (21) 

where 0<A means heating from below (if the liquid 
is heated from above, then according to (18) when 

01 >α the equilibrium is stable by itself). In 
conditions of weightlessness, as follows from (18), the 
liquid should be stabilized to any kind of disturbance 
with any E . This method of stabilizing the equilibrium 
seems expedient for the purposes of space flight. 

3.1 Equilibrium  of  a  flat  horizontal  layer  with 
first-order boundary conditions. Conditions of 
occurrence of Joule electric convection 
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We will consider a plane-parallel horizontal layer of 
liquid in a vertical field of a plane capacitor in 
conditions of passage of an electric current ( j =
const). In this case, the equation (2) has the form 

( ) ( )zjdzzTd λσ222 −= , (22) 

the approximate solution of which with first-order 
boundary conditions, 0=zθ and slz θθ == , was 
derived with accuracy to within the quadratic terms 
with respect to z in the form of expansion into a 
Maclaurian series: 

( )
l

zllzj
l
zz s

0

2

λσ
θθ −

⋅+⋅= . (23) 

From (23), we can determine Tgrad :

kkA ⋅≡⋅






 −
⋅+= A

l
zllj

l
s

0

2

2
2

λσ
θ (24) 

and then the Coulomb and buoyancy forces: 

kfC ⋅






 −
⋅+⋅⋅=

l
zllj

l
j

dT
d s

0

2

0

2

2
2

λσ
θ

σ
τ ; (25) 

kf A ⋅






 −
⋅+⋅⋅=

l
zllzj

l
zg s

0

2
0 2

2
λσ

θβγ . (26) 

In (25), the first term characterizes the electrothermal 
force on account of external heat exchange; and the 
second one, on account of internal Joule heating. 
Consequently, their ratio characterizes the contribution 
of Joule heating in comparison to external heat 
exchange: 

( )
s

sL
λθ
ϕ

σ
2

2∆
⋅≅ , (27) 

which makes sense when 0≠sθ . It is not hard to 
ascertain that 1~L when σ = 0.1 mS/m, i.e., for 
liquids such as distilled water, which is also given by 
the evaluation (10). If we set 0=sθ in (25) and (26) 
(the same temperatures of the capacitor plates), then 
we can get expressions for the force factors due to 
"pure" Joule heating: 

( ) ( )[ ]4
2

2
100

1

0

0

1 lzg
jz

dT
d

f

f
zK

s

s

A

C

−
⋅==

=

=

σγβ
τ

θ

θ , (28) 

where 21 lzz −= .
The ratio ( )1zK is of a local nature: near the 
electrodes, Coulomb forces predominate; and in 
middle layers of the liquid, buoyancy forces. The 
boundaries between layers correspond to equality of 
Coulomb and buoyancy forces. The width of the 

middle layers is equal to 

( ) ( ) ( )1
1

2
1

21 zzBBl −≡



 ++−⋅≡δ , (29) 

where ( ) ( )lgjdTdB 00
22 σβγτ ⋅⋅≡ ; and ( )1

1z and 
( )2
1z are the roots of the equations ( ) 11 ±=zK . When 

( )∞→→ jB 0 , 0→δ and forces of Coulomb origin 
are totally predominant in the liquid. Thus, we come to 
the conclusion that EHD phenomena caused by Joule 
heating appear in the form of layered structures such 
that nonstationary oscillatory movements should be 
observed near the surface of the electrodes, and "still" 
Bénard cells, in the central region. 

3.2 Equilibrium and electroconvection of a layer 
enclosed between cylindrical capacitor plates 

Consideration of a problem analogous to the preceding 
one, but for a cylindrical layer, in which condition (12) 
is not fulfilled and gravitational forces are ignored, 
shows that if the temperature of the liquid rises from 
the center to the outside capacitor plate, then the 
equilibrium is absolutely stable. If the radial temperature 
gradient goes in the opposite direction, then, in contrast 
to the case of a plane layer, Joule electrothermal 
convection is possible, which is also spatially 
nonuniform in intensity. It is possible only with 
negative temperature gradients. 
On the other hand, with isothermal boundaries 
surrounding the liquid, the temperature gradient in the 
interelectrode space changes sign, i.e., there is an 
inversion layer for the sign of Tgrad . Therefore, the 
condition of occurrence of electroconvection cannot be 
fulfilled in the whole interelectrode space. In this case, 
there is a critical temperature difference above which 
such conditions are provided. 

4. HEAT   EXCHANGE   IN   CONDITIONS   OF 
 JOULE ELECTROTHERMAL CONVECTION 

Previously, the concept of an effective Reynolds 
number was introduced for the case of electrothermal 
convection [3], which is determined in approximation 
of a laminar boundary layer by the expression 














⋅++

+
=

ef

2

ef

E
ef Re

GrRe
Re1

GrRe k
kM

, (30) 

where ( ) 22
EGr γνϕθεβτ ss ∆= is an "electric" analog 

of the Grasshoff number, which is derived by isolating 
the moving part of the force (9); 31Pr~ −k is a 
coefficient depending on the Pr number; 

2lM ⋅≡ σεν is the ratio of the electric and 
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hydrodynamic relaxation times; 
( ) ( )dTdl ττβτ ⋅= = σε ββ + ; ( ) ( )dTdl εεβ

ε
⋅≡ ;

and ( ) ( )dTdl σσβσ ⋅≡ .

Taking ( ) λϕσθ 2
ss ∆≡ according to (10) and 

substituting this relationship in the expressions for the 
Gr and GrE numbers, we get 

( ) ( )
2

4

E2

23

Gr;Gr
λγν

ϕεσβ

λν

ϕσβ τ SSlg ∆
=

∆⋅
= . (31) 

In the same approximation of the boundary layer, the 
Nusselt number is determined from the familiar 
dimensionless dependence 

( ) 0.5
efRePrNu ⋅= f . (32) 

Checking of equation (30) with the help of dependence 
(32) for particular cases demonstrated its validity. For 
example, with pure forced movement (Gr = 0, GrE =
0), the familiar dependence Nu(Re) follows from (30) 
and (32). With GrE = 0 and Re = 0, the following 
relationship can be derived from (32) and (30): 

( ) ( )0.40.2
E ~GrPrNu Sf ϕ∆⋅= , (33) 

which is valid, as it should be, for large Gr numbers 
( 610Gr ≥ ) in the case of heat transfer in horizontal 
layers of liquid [3]. If Gr = 0 and Re = 0, then from 
(30) and (32) it follows that 

( ) Eef
2
ef GrReRe =⋅⋅+ Mkl . (34) 

From expressions (34) and (32), taking into account 
(31), two asymptotic cases of electrothermal convection 
can be derived - moderate and intensive:

( )
( ) ( ) .1Reif,~GrPrNu

;1Reif,~GrPrNu

ef
3261

E
61

E

ef
41

EE

>>∆=
<<∆⋅=

− kMMf
kMf

S

S

ϕ
ϕ

(35) 

Dependences of the same type as (35) were derived 
theoretically in [6]. In all likelihood, for the more 
general case we can expect a dependence of the type 

( ) m
n

lf E

2

E GrPrNu ⋅








 ⋅
⋅=

εν
σ , (36) 

in which 0 < n < 1/6, with the exponent n rising as 
convection develops, and m falling. 

5. CONCLUSIONS 

Distinguishing characteristics of joule heating of 
liquids such as distilled water consist in the appearance 
of an electric force proportional to the potential 
difference to the fourth power, the existence of 
conditions of the liquid's dominant tendency toward 

electrohydrodynamic equilibrium (even in alternating 
commercial-frequency fields), and development of 
electrothermal convection of the Joule type, which is 
characterized by formation of layered structures such 
that nonstationary wave movements are observed near 
the electrodes, and stationary currents like Benard cells 
in the core of the flow. Depending on the heat-exchange 
conditions at the boundaries with the electrodes, 
convection may occur in a limited region of the liquid 
with an inversion surface for the sign of the 
temperature gradient, or it may encompass the whole 
volume if certain conditions are observed. 
In our view, experimental checking of dependences 
(33) and (35) will make it possible to confirm the 
physical hypotheses in relation to electric convection 
of the Joule type and its practical use. 

List of notations 

ε - absolute    permittivity    of    the   liquid,   [F/m]; 
l - interelectrode  distance, [m];  P- pressure,  [Pa]; 
γ - density of the liquid, [kg/m3]; λ - thermal 
conductivity, [W/(m.K)]; σ - electric conductivity of 
the    liquid,    [S/m];    j - current    density,    [A/m2]; 
ϕ -potential of the electric field, [V]; τ - electric 
relaxation  time,  [s];  f - density  of  forces,  [N/m3]; 
θ - temperature difference, [K]; T - temperature, [K]. 
Subscripts: s - on  the  surface  of  the  electrodes; 
E - electric parameter; 0  - initial (boundary) value; 
c - critical value. 
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