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Abstract −In the paper you will implement a set point 
control system for the single-link manipulator with 
flexible joint using a multiloop controller based on 
feedback linearization (inner loop) and linear state-
feedback control (outer loop). Then, you will modify the 
multiloop controller to solve a trajectory tracking 
problem. 
The simulations demonstrate that the multi-loop  control 
law it is a viable method for control motion of the flexible 
joint manipulator.
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1. INTRODUCTION 

In the past fifteen years a large amount of research has 
been focused on the control of flexible joint robots . 
The relevant nonlinear control methods are grouped 
into three categories, singular perturbation, cascaded 
systems, and feedback linearization. The singular 
perturbation technique divides the dynamics by time-
scale into the fast, or elastic subsystem dynamics, and 
the slow, or rigid-body dynamics. A rigid-body control 
law can be designed to stabilize the slow system and a 
second controller is designed to stabilize the fast 
system. The cascade system approach separation 
between the slow and fast dynamics.  
The cascade system approach first solves the problem 
as if the links themselves can be directly controlled, 
then determines the actual control that would be 
required to account for the joint flexibility. In this 
approach, the dynamics of the joint flexible system are 
separated into two cascaded equations, first the 
manipulator equations and then the actuator equation. 
The “input" to the manipulator set of equations is the 
force applied by the flexible joint between the motor 
and the link. After the desired “input" to the links has 
been determined, the next loop controls the force to the 
actuator so that the flexible joint provides the desired 
“input" to the link. 
Spong and Forrest-Barlach showed that, through a 
state transformation, the equations of motion for a 
flexible-joint robot are globally feedback linearizable. 
In this approach, the equations are transformed to a 
single equation that is a function of the position, 

velocity, acceleration, and jerk of the link to a single 
equation that is a function of the position, velocity, 
acceleration, and jerk of the link. The transformed 
equations are then in a form that can be linearized by 
feedback control, as the dynamics are expressed in a 
single equation with the joint torques as the input. 
In the paper, you will implement a set point control 
system for the single-link manipulator with flexible 
joint using a multiloop controller based on feedback 
linearization (inner loop) and linear state-feedback 
control (outer loop). Then, you will modify the 
multiloop controller to solve a trajectory tracking 
problem. 

2. FLEXIBLE JOINT MANIPULATOR MODEL  

A flexible joint is modeled as a motor and link 
separated by a torsional spring as shown in Figure 1 
The torque is applied to the motor rotor, modeled as a 
disc. The motor can be viewed as an intermediate link, 
with the next link passively connected by a torsional 
spring. The model used in this paper is that proposed 
by Spong [1]. The derivation of the model includes 
only the kinetic energy of the motor that comes from 
its own rotation. The assumption is that the off-axis 
rotations of the motor are any geared system. For 
planar robots, such as used in this research, the model 
is exact.  

Fig.1- Multi joint flexible manipulator 
 
The resulting equations of motion for a flexible-joint 
manipulator can be written as : 
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where n
l Rq ∈ represents the link angles and 

n
j Rq ∈ represents the joint angles of a robot with n 

degrees of freedom. nxn
l RqM ∈)( is the inertia 

matrix, n
lll RqqC ∈),(

.
represents the Coriolis, 

centrifugal forces and gravitational forces, and 
nR∈τ is the input torque vector. The diagonal 

matrix nxnRD∈ contains the inertia of the joint 
motors and the diagonal matrix nxnRK ∈ represents 
the spring constants. As before, mxn

l RqJ ∈)( is the 
Jacobian relating link velocities to end –point 
velocities, and m

ext RF ∈ is the external force at the 
end-point of the robot. 
The first equation, Equation 1, describes the link 
motion, and the second equation, Equation 2, describes 
the joint behaviour. Note the similarities between 
Equation 1 and the equation describing the rigid robot. 
The equations are the same, except that in the case of 
the flexible-joint robot, the input to the links is the 
torque in a spring rather than a direct torque. The 
rigid-robot equation has the input on the right side, 
whereas the flexible robot has the term  )( lj qqK − .
Then the joint equations, Equations 1 can be used to 
control jq using the actual joint torques 
The equations of motion can be written in the new 
form. We rewrite the equations of motion so that the 
Coriolis and centrifugal term is written as 

),(
.

2 lj qqC

such that ),(),(
...

2 lllll qqCqqqC = and the external 
force is set to zero: 
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where the flexible-joint position jq is the virtual input 
to Equation 2.  

3. DINAMIC STATE DECUPLING AND 
LINIARIZATION THEORY OF NONLINEAR 
SYSTEMS  

a) The regulated output of your system is .lii qy =

and  all the state variable ),,(
...

lilili qqq are available 
for feedback. First, you need to implement the inner 

loop (feedback linearization). The state-space model 
for (2) is a nonlinear multivariable system, described 
by a vector of state x, of dimension n*1 and output y 
of dimension m*1 

uxBxAx )()(
.

+= (3) 
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where u is the command vector, of dimension m*1 and 
C represents a constant matrix. 
In order to achieve the liniarization, it is analyzed a 
nonlinear control law u(t), which accomplishes this 
operation: 

 
wxGxFu )()( += (4) 

Where: 
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where w(t) represents a new command of dimension 
m*1 and C*(x), D*(x)  matrices of  dimension  n*n and  
vector  of dimension n*1 : 
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First, you need to implement the inner loop (feedback 
linearization). Build a block that produces the change 
of coordinates In the matricial form: 
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Then, implement the outer loop control 
Kxw = (8) 

where K has been obtained using favorite linear design 
method. 

4. MULTILOOP TRACKING CONTROLLER  

In the second part of the experiment, the outer loop 
controller will be modified to let the output 
y(t)=Cx(t)=Ix(t)  of the system track a time-varying 
reference trajectory  yd(t). In order to have x(t)  track 
yd(t), we need to drive the state x(t) to an appropriate 
time-varying equilibrium (a reference state trajectory 
function of yd(t) and its derivatives). Assume that 



201

yd(t) and its derivatives unto order 2  are known. 
Remember that, after feedback linearization, the 
system is given by: 

 
.
( )x x Ax Bw= +  

y Cx= (9) 

And dx is impose to satisfies  
. ..

d dx Ax B y= +  

d dy Cx= (10)
 
We define the error: 

. . .

de x x= − (11) 

and we obtain the error dynamics: 

][
...

dywBAee −+= (12) 
In order to regulate e(t) to zero, we need to choose an 
outer-loop control input v that performs two 
distinct actions: 
1. Rendering the point e = 0 an equilibrium for the 
error dynamics 
2. Stabilizing the newly created equilibrium at the 
origin. 
The first action is performed by the feedforward 
control      

 dff yw
..

= (13) 
while the second is performed by the usual state-
feedback 
 Kew fb = . (14)             
Letting        
 fbff www += , (15)               

we obtain the closed loop system   eBKAe )(
.

+=
which has an asymptotically stable equilibrium at the 
origin, as required. Note that the stabilizing controller 
is exactly the same as before, only the way the error is 
defined changes, and a feedforward control action is 
needed. 
The last thing to do is to generate yd and its 
derivatives. The best way to do so, is to implement a 
reference model, that is, to filter a reference signal 
through a stable linear systems. Let yd be given in the 
Laplace domain as the output of the transfer function  
 

)()()( sysMsy rd = (16) 
 
where yr(s) is an external reference signal, and M(s) is 
the reference model. Assume that 
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Where  the roots of 01
2 asas ++  are all Re[s]<0 

5. SIMULATIONS RESULTS  

As an example system, let k=100, d=1, I=2 and 
l=1.For the control design on choose 1 20K = and 

2 20K = , 0 2 11; 4a a a= = = . First we consider 

( )ry t an Sine Wave signal with amplitude 5 and 

frequency 0.3 [rad. /sec], and the last, ( ) ( )ry t tσ= .

Fig.3. Simulations of multiple-loop controller  
 

Fig.4. ,ld lq q for ( ) sin( )lrq t A tϖ=



202

Fig.5. ,l jq q for ( ) sin( )lrq t A tϖ=

Fig. 6. ,ld lq q for  ( ) ( )lrq t tσ=

Fig.7. ,l jq q for  ( ) ( )lrq t tσ=

6. CONCLUSIONS 

The paper analyses and shows the design principle of 
the multiple loop nonlinear controller for manipulator 
with flexible joint. The simulations demonstrate that 
the multi-loop  control law it is a viable method for 
control motion of the flexible joint manipulator  
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