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Abstract − State Dependent Riccati Equation(SDRE) 
method  is a recently emerged nonlinear control system 
design methodology for direct synthesis of nonlinear 
feedback controllers. Using a special form of the system 
dynamics, this approach permits the designer to employ 
linear optimal control methods such as the LQR 
methodology design technique for the synthesis of 
nonlinear control systems. 
The analysis and simulations demonstrate that the SDRE 
technique it is a good methodology for direct synthesis of 
nonlinear feedback controller for D.C. Series motor.  
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1. INTRODUCTION 

Linear quadratic regulation (LQG) is an effective 
theory for the synthesis of control laws for linear 
systems. However, most mathematical models are 
inherently nonlinear. One of the highly promising 
and rapidly emerging methodologies for designing 
nonlinear controllers is the state-dependent Riccati 
equation (SDRE) approach in the context of the 
nonlinear regulator problem. In essence, the SDRE 
method is a systematic way of designing nonlinear 
feedback controllers that approximate the solution of 
the infinite time horizon optimal control problem and 
can be implemented in real-time for a broad class of 
applications. In most cases, the theory developed also 
involves using nonlinear weighting coefficients for 
the state and control in the cost functional to produce 
near optimal solutions. This methodology is quite 
useful and also quite difficult to implement for 
complex systems. Therefore, it is of general interest 
to explore the use of constant weighting matrices to 
produce a suboptimal control law that has the 
advantage of ease of configuration and 
implementation. In [5], an efficient computational 
methodology was proposed that requires splitting the 
state-=dependent coefficient matrix )(xA into a 
constant matrix part and a state-dependent part as: 

)()( 0 xAAxA ∆+= . This method is effective 
locally for systems with constant control coefficients 
and if the function )(xA∆ is not too complicated 
(e.g., when it has the same function of in all entries) 

then the SDRE can be solved through a series of 
constant-valued matrix Lyapunov equations. The 
assumption on the form of )(xA∆ , however, does 
limit the problems for which this SDRE 
approximation method is applicable.              
In this paper, we examine the SDRE technique with 
constant weighting coefficients. In Section 2, we 
review the SDRE design technique. In Section 3 we 
present numerical approach for obtaining the SDC 
model. In Section 4 is presented the suboptimal 
control using SDRE solution. In Section 5 and 6 we 
realize the suboptimal control using SDRE solution 
for D.C. Series Motor. The simulations demonstrate 
that the SDRE technique it is a good methodology for 
direct synthesis of nonlinear feedback controller for 
D.C. Series Motor.  

2. THE SDRE DESIGN TECHNIQUE  

The SDRE design technique requires the dynamic 
model of the system to be placed in the state dependent 
coefficient (SDC) form. The SDC form has the 
structure: 

 uxBxxAx )()(
.

+= (1) 
 
Note that the SDC form has the same structure as a 
linear dynamic system, but with the matrix A and the 
control influence matrix B being functions of the state 
variables. 
The second ingredient of the SDRE design technique 
is the definition of a quadratic performance index in 
state dependent form: 
 

[ ]∫
∞

+=
0

)()(
2
1

t

TT dtuxRuxxQxJ (2) 

The state dependent weighting matrices Q(x) and R(x) 
can be chosen to realize the desired performance 
objectives. 
Next, a state dependent algebraic Riccati equation 
(SDRE), (3): 
 

0)()()()()()()()()()( 1 =+−+ − xQxPxBxRxBxPxAxPxPxA TT
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is formulated and is solved for a positive definite state 
dependent matrix P(x). The nonlinear state variable 
feedback control law is then constructed as: 
 

xxPxBxRu T )()()(1−−= (4) 
 
The two main steps in the SDRE nonlinear control 
system design method are the computation of the SDC 
matrices A(x) and B(x), and the solution of the 
algebraic matrix Riccati equation for P(x). The 
remaining steps involve matrix inversion and 
multiplication. 

3.  METHODS  FOR OBTAINING THE SDC 
MODEL  

It will be assumed that the dynamic system is given in 
the standard form: 

.
( ) ( )x f x B x u= +  (5) 

 
Here x is the state and u is the control vector. Note that 
the control vector appears linearly in the system 
dynamics. If the control variables appear nonlinearly 
in the system dynamics, an input dynamic 
compensator can be introduced to transform the model 
into standard form 
Any input dynamic compensators can be employed, 
provided that the redefined control variable appears 
linearly in the dynamics. At any given value of x, 
finding the SDC form: 

 
.

( ) ( )x A x x B x u= +  (6) 
 
From the given nonlinear dynamic system requires the 
solution of the system of n equations:      
 

)()( xfxxA = (7) 
 
Instantaneous SDC parameterization can be obtained 
by evaluating the vector nonlinear function f(x) using a 
set of linearly independent probe vectors .2 ,..., nζζ
The probe vectors can be constructed by adding 
magnitude perturbation vectors nσσσ ,..,, 32 to the 
nominal state vector to yield a set of linearly 
independent vectors: 
 

nn xx σζσζ +=+= ,...,22 (8) 
 
The nonlinear function f(x) is next evaluated using 
these linearly independent vector. Assemble the matrix 
equation (9) 
 
[ ] [ ]nn xxAffxf ζζζζ ...)()(...)()( 22 =

At any given value of x, this linear matrix equation can 
be solved for the elements of A(x). Since the probe 
vectors and the state vector are linearly independent, 
this equations is well-conditioned , and can be solved 
using well-known linear algebraic methods. 
Note that the foregoing computations will have be 
carried out at every sample. The SDC matrix A(x) 
from these computations can next be used to formulate 
and solve the SDRE control problem. 
As an aside, it is interesting to examine the 
relationship between the numerical construction of the 
SDC model and the conventional Taylor series 
approximation. If the perturbation vectors 

nσσσ ,...,, 32 are small, it can be found that: 
 

x
fA
∂
∂

≅ at x=0            (10) 

Note that this corresponds to the Taylor series 
linearization of the system dynamic about the origin. 
Thus, the present methodology for constructing the 
SDC model automatically reverts to Taylor series 
linearization of the system dynamics near the origin 
of the state space 

4. SUBOPTIMAL CONTROL USING SDRE    
SOLUTION  

The focus of this section will to be formulate  the 
suboptimal control using SDRE solution. In (6) an 
efficient computational methodology was proposed 
that requires splitting the state-dependent coefficient 
matrix A(x) into a constant matrix part and a state-
dependent part as 0( ) ( )A x A A xε= + ∆ . This 
method is effective locally for systems with constant 
control coefficients and if the function ( )A x∆ is not 
too complicated.. Then the SDRE can be solved trough 
a series of constant valued matrix Lyapunov equations.      
Likewise, A(x) and B(x) can be rewritten using the 
constant matrices 0A and 0B and no constant matrices 

)(xA∆ and )(xB∆ defined as: 
 

)()( 0 xAAxA ∆+=
)()( 0 xBBxB ∆+= (11)                 

 
with 0)0(;0)0( =∆=∆ BA This leads to the 
control u(x) being represented as a the sum of a 
constant matrix and an incremental matrix, 
 

xxKKxu ))(()( 0 ∆+−= (12) 
Where 

 00
1

0 PBRK T−= (13) 
and 
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1
0( ) ( ( ) ( ) )T TK x R B x P x B P−∆ = ∆ + ∆ (14) 

 
By construction )(xP∆ and )(xB∆ are zero at the 
origin so that 0)0( =∆K .Under continuity 
assumptions on A(x) and B(x), along with the 
assumption that the SDC parameterization is a 
detectable and stabilizable parameterization, it follows 
that P(x) is continuous. 
Assume that A(x) and B(x) defined by (6) are 
continuous and (7) is a detectable and stabilizable 
parameterization Then the system with the control 
given by (12) is locally asymptotically stable. 
The controlled nonlinear dynamics can be rewritten in 
the form (15): 
.

0 0 0

0 0 0 0

( ) ( ) ( )
( ( )) ( ( ))( ( ))
( ) ( ( ) ( ) ( ) ( ) )

x A x x B x K x x
A A x x B B x K K x x
A B K x A x B x K x B x K x

= − =
= +∆ − +∆ +∆ =
= − + ∆ − ∆ −∆

 

If we let: 

0)()()()()( KxBxKxBxAxg ∆−∆−∆=
(16) 

And h(x)=g(x)x, then the system is given by: 

 )()( 000

.
xhxKBAx +−= (17) 

 
Examination of h(x) reveals that we are dealing with 
an almost linear system satisfying the property 
 

0
)(

lim

0

=

→x
x
xh

We can then obtain the solution to (17) using the 
variation of constants formula : 

∫ −−− +=
t

stKBAtKBA dssxhexetx
0

))(((
0

)( ))(()( 000000 (18) 

With the relation (3), for ( )A A x≡ ∆
01 =+∆∆−∆+∆ − QPBBRPAPPA TT (19)                                   

It is resulte P(x) and for x=0, 0P and  

0( ) ( )P x P x P∆ = − (20) 

5. EXEMPLE. D.C. SERIES MOTOR. 
SIMULATIONS AND RESULTS 

To investigate the performance of this control 
approach, the D.C. Series motor is used. The detailed 
computations   show that the engine and its command 
is represented by a system of  nonlinear equations: 

 
21

11 1 12 2 1 1( ) ( )dx b x b x f x B x u
dt

= + = +  (21) 

2
21 1 2 22 2 23 3 2 2( ) ( )dx b x x b x b x f x B x u

dt
= + + = +  

where, 

uxixx === 321 ;;ω (22) 

11 12 21 22 23
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We can write: 
 

.
2

1 11 1 12 2
.

2321 1 2 22 22

0x b x b x
u

bb x x b xx

   +    = +     +    

 (23) 

 
An SDC parameterization is given as: 

.

1 11 12 2 1
.

3312 2 22 2
2

0b b x xx
u

bb x b xx

        = +             

 (24) 

 
The resulting constant and incremental matrices (11 ) 
have the form: 
 

11 12 2
0

22 21 2

0 0
; ( )

0 0
b b x

A A x
b b x

   
= ∆ =   
   

0
23

0
; ( ) 0B B B x

b
 

= = ∆ = 
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The cost functional for the example under is 
 

2
0

0

1 0 12( )
1 20
2

TJ x u x x u dt
∞
  
  
 = + 
      

∫ (26) 

6. SIMULATIONS RESULTS  

As explained in the previous section, to illustrate the 
proposed controller algorithms 
The first, the d.c. drive system is operating at the 
steady state x1=90 deg. and x2=10 amp. At the time 
t=0 sec. a decrease step of the speed on impose, 
x1ref=0 deg. 
The second, the operating point of the d.c. drive 
system is selected at x1=0 deg. and x2=10 amp. At the 
time t=0 sec a increase step of the speed on impose, 
x1ref=90 deg. 
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Fig.1 

 
Fig.2 

 
Figs. (1) and (2) show the state responses, the rotor 
speed and the current motor in the first and second 
case. 

7. CONCLUSIONS 

In this paper we have considered SDRE techniques for 
the general design and synthesis of feedback 
controllers, of nonlinear systems. In particular, the 
SDRE methods were formulated for cost functional 
with constant weighting coefficients. In addition, the 
Kleinman algorithm  were presented for the numerical 
approximation of the solution to the SDRE for a large 
class of nonlinear problems. This approach is very 

easy to implement and was shown to perform very 
well on a wide class of nonlinear systems. 
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