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Abstract −−−− In the case of the designing of the different 
types of the electromagnetic devices, a particular 
important problem is the magnetic field computation in 
different operation. The problem is itself a difficult one, 
even in the steady-state and/or quasi steady-state. After 
a series of considerations are done with regard to the 
magnetic field computation methods, emphasizing the 
fact that the things are more complicated than in the 
case of the electric field computation, in the paper are 
presented the steady-state magnetic field. Then the 
results of the magnetic field computation are given back 
in the case of three applications: the straight 
filamentary conductor with the finite length, the 
straight circular single turn and the bar with the 
rectangular cross-section. The study is accomplished by 
means of the symbolic computation (MAPLE) which 
presents a series of advantages in comparison with the 
computation on the basis of the numerical methods 
(FEM, FDM, etc.). 
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1. INTRODUCTION 

The solving of an electromagnetic field problem 
generally, respectively of a steady-state magnetic 
field problem, particularly, requires the crossing of 
three stages, namely: - the correct formulation of the 
field problem; - the choice of the most suitable 
method for the solving; - the verification of the 
results by means of the particular solutions or by 
their comparison with the others, which are a priori 
known and was obtained by others methods than the 
chosen one. 
The correct formulation of a field problem supposes, 
first the establishment of a phenomenological model 
of this. The transposition in the formal plan of the 
essential phenomena, on the base of a biunique 
correspondence, constitutes what is named 
mathematic model. The phenomenological model and 
the mathematic one form the field theoretic model. 
The afferent equations of the field theoretic model 
have to form a complete system that is to satisfy the 
existence and uniqueness theorems. 
The field problem is correct formulated if the 
solution exists, is unique and depends continuous of 
the problem data. 

In the main, field mathematic model can be: of the 
differential, integral, variational or topological type. 
The solution of the field problem can be obtained by: 
analytical, numerical and graphical methods.
The main analytical methods are: the direct method 
(or the integral equations method), the magnetic 
image method, the method of the solving Laplace or 
Poisson equations by: the separation variables 
method, Green functions method, the complex 
variable functions method, the conformal 
transformations method (Schwarz-Christoffel), etc.  
The numerical methods can be applied, generally, for 
any field problem, two-dimensional (2D) or three-
dimensional (3D). In this category enter: finite 
difference method (FDM), boundary element method 
(BEM), finite element method (FEM) Monte-Carlo 
method (MCM), etc. 
The graphical methods consist in the graphic drawing 
of the field and equipotential lines spectra 
(Lehmann), and the graphic-analytical methods 
consist in the approximation of the field lines shape 
by the straight line segments and the circle arcs, 
connected between them. 
The computation methods of the steady-state 
magnetic field are in a large measure similarly with 
the electrostatic field methods [1], [2]. The difference 
between the two classes of the problems consist in 
the types of Poisson and Laplace equations which are 
satisfied by them: only scalar equations for the 
electrostatic field V , scalar equations for the scalar 
magnetic potential mV and vectorial equations for the 
vector magnetic potential A [3]. 
The computation of the magnetic field strength H
and the magnetic flux density B assume known: the 
geometrical configuration of the conductors and the 
material properties of the media – given by 
magnetization curves ( )B B H= for the nonlinear 
media, respectively magnetic permeability µ for the 
linear media, as well as the currents intensities in the 
conductors and the total magnetic fluxes. 
In both problems the boundary conditions are 
supposed that are known (Dirichlet, Neumann or 
mixed). 
A special attention have to give to the boundary 
conditions for the vector magnetic potential in 
Dirichlet and Neumann problems, which are not 
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established as in the problem corresponding to the 
scalar potential, even in the cartesian co-ordinates. 
In this paper they are presented three applications 
referring to steady-state magnetic field computation: 
the straight filamentary conductor with the finite 
length, the straight circular single turn and the bar 
with the rectangular cross-section. It is used the 
direct method, utilizing the Biot-Savart-Laplace 
formula in the homogeneous media on the basis of 
the facilities offered by the symbolic manipulator 
MAPLE [4], [5]. 

2. STEADY STATE MAGNETIC FIELD 
EQUATIONS 

The magnetic field is represented by the vectors pair 
( ),B H . Fundamental relations of the steady-state 
magnetic field result from the general and material 
laws of electromagnetism in the following 
conditions: the bodies are motionless, 0v = ; the 
quantities are not variable in time, 0t∂ ∂ = . These 
relations are: 
• the coupling law  between B , H and M :

( )0 , with  t pB H M M M M=µ + = + ; (1) 

• the temporary magnetization: 

( ),  or     (isotropic materials);t t mM f H M H= = χ (2) 

• the magnetic flux law: 

d 0;    div 0;B n A BΣ
Σ

Φ = ⋅ = =∫∫� (3) 

• the conservation theorem of the normal components 
of the magnetic flux density: 

( ) ( )s 12 2 1 1 2div 0;  n nB n ( B - B ) B B= ⋅ = = ; (4) 

• Ampère’s law: 

d ;    rot m Su H l H J
ΓΓ

Γ
= ⋅ = Θ =∫� ; (5) 

• the conservation theorem of the tangential 
components of the magnetic field strength: 

( ) ( )12s 2 1 1 2rot 0;  t tH n ( H - H ) H H= × = =  (6) 

or: 

 ( ) ( )12s 2 1 1 2rot ;l t t lH n ( H - H ) J H H J= × = − = ,(6’) 

when on the discontinuity surface there is a superficial 
sheet of current; 
• the refraction theorem of the magnetic field lines: 

1 1

2 2

tg
tg

α µ
=

α µ
; (7) 

• the  Poisson and Laplace equations: 

, 0A J A∆ = −µ ∆ = , (8) 

where A is vector magnetic potential. 
From (3), div 0B = it results: 

 rot A B= , (9) 

with Coulomb gauge condition div 0A =
• Biot-Savart-Laplace formula for the filiform 

conductors: 

( ) 3
d

4
i s RH r

RΓ

′×
=

π ∫� , (10) 

where R r r′= − is the distance from the 
elementary source of field to the point where the field 
is calculated. 
• Biot-Savart-Laplace formula for the solid 

conductors: 

( ) ( )
3

1 d
4

J r R
H r v

R

′ ×
′=

π ∫∫∫D . (11) 

In fact the solving of a steady-state magnetic field 
problem is reduced to the determination of the   
solution ( ) ( )A M A r= for the Poisson or Laplace 
equations, taking into account the boundary 
conditions. The verification of the solution is done by 
the comparison with a simple solution which is a 
priori known. Therefore, the solving of the simple 
problems is useful, because their solution constitutes 
the verifications for the results obtained in the case of 
the using of the modern methods for the steady-state 
magnetic field computation. 
In many situations is more suitable that the vector 
magnetic potential A to be calculated firstly, and the 
magnetic flux density to be calculated with the 
relation (9). In the case of magnetic field generated 
by the filiform conductors which are crossed by the 
electric current, Biot-Savart-Laplace formula has the 
expression: 

 ( ) d
4

i sA r
RΓ

′µ
=

π ∫� . (12) 

3. SYMBOLIC COMPUTATION. 
APPLICATIONS 

Now there is the tendency to be used numerical 
methods for the electromagnetic field computation 
(FEM, FDM, etc.). However, the numerical approach 
in the electromagnetic field analysis has a series of 
the disadvantages: a) the study of the limit cases or of 
the result dependence of the problem parameters is 
done more difficult with the numerical methods, b) 
the using of the numerical methods leads often to the 
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loss of  the physical meanings of the problem. These 
drawbacks can be eliminated by the using of 
symbolic methods, besides the numerical ones. 
The main advantages of the utilization of the 
symbolic computations are: 
- the automatic writing of the general expressions (in 
any point from the space) of the magnetic field (or of 
the vector magnetic potential) by the adequate choice 
of the co-ordinates system (function of the problem 
symmetry) and the accurate calculation of these; 
- the automatic drawing of the 2D and 3D magnetic 
field spectra, allowing that the suggestive images to 
be obtained; 
- the calculation of the particular solutions for which 
are known the simple formulas for the increasing of 
the confidence that the analysis was realized correct. 
Using those which are showed in § 2, further the 
obtained results for three application are presented. 

3.1. The magnetic field and the vector magnetic 
potential generated by the straight 
filamentary conductor with the finite length 
crossed by the electric current (fig. 1)  

Figure 1: The straight filamentary conductor with the 
finite length crossed by the electric current. 

In the table 1 is given the MAPLE code used for the 
symbolic computation of the vector magnetic potential 
and the magnetic field for the straight filamentary 
conductor with the finite length crossed by the electric 
current. 
 
> e[r]:=vector([1,0,0]);e[phi]:=vector( 
[0,1,0]);k:=vector([0,0,1]);  
> Rp:=r*e[r]+z*k;Rm:=z1*k;Rp:=evalm(Rp); 
Rm:=evalm(Rm); 
>R:=Rp-Rm; R:=evalm(R); 

>Rmod:=sqrt(R[1]^2+R[2]^2+R[3]^2); 
> A:=mu*Io/(4*Pi)*Int(k/Rmod,z1=-l..l); 
 

0rA =
0Aϕ =

( ) ( )

( ) ( )

2 2

2 2
ln

4
o

z
z l r z lIA
z l r z l

− + − −µ
=

π + + − +

>v:=[r,phi,z]:B:=curl([Ar,Aphi,Az],v,coo
rds=cylindrical):Br:=dotprod(B,e[r]);Bz:
=dotprod(B,k);Bphi:=dotprod(B,e[phi]); 

 
0rB =
0zB =

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2

2 22 2

2 22 2

1
4

4

oI rB
z l r z l r

z l z l r z l z l r zl

z l z l r z l z l r

ϕ
µ

= ⋅
π − + + +

− − + − + + + +
⋅
   + − + + − − − +      

Table 1 – MAPLE code for the straight filamentary 
conductor with the finite length crossed by the electric 

current 

The 2D and 3D magnetic field spectra (fig. 2, 3) and 
the 3D variation of the magnetic flux density in an 
axial section (fig. 4) were plotted on the basis of the 
obtained solutions. The values of the parameters are: 
electric current intensity 100 AI = , length 2 2 ml = .

Figure 2: 3D spectrum for the magnetic field in the 
case of the straight filamentary conductor with the 

finite length.  
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Figure 3: 2D spectrum for the magnetic field in the 
case of the straight filamentary conductor with the 

finite length in a cross section. 

Figure 4: 3D variation of the magnetic flux density in 
an axial section in the case of the straight filamentary 

conductor with the finite length.  

3.2. The magnetic field and the vector magnetic 
potential generated by the straight circular 
single turn crossed by the electric current 
(fig. 5) 

Figure 5: The straight circular single turn crossed by 
the electric current. 

In the table 2 is given the MAPLE code used for the 
field computation in the case of the straight circular 
single turn. 
> e[r]:=vector([1,0,0]);e[phi]:=vector( 
[0,1,0]);k:=vector([0,0,1]);  
> Rp:=r*e[r]+z*k;Rm:=z1*k;R:=Rp-Rm; 
Rmod:=sqrt(R[1]^2+R[2]^2+R[3]^2); 
> ds:=a*sin(phi)*e[r]+a*cos(phi)*e[phi]; 
>A=mu*Io/(4*Pi)*Int(ds/Rmod,phi=0..2*Pi) 
>v:=[r,phi,z]:B:=curl([Ar,Aphi,Az],v,coo
rds=cylindrical); 

( )( ) ( )

( )
( )

( )( )
( )

2 22 2

2 2 2
2 2

2 2
2 2

2

EllipticE 2

EllipticK 2

o
r

I zB
r r a z r a z

arr a z
r a z

arr a z
r a z

µ
= ⋅

π − + + +

  
  ⋅ + + ⋅ −
  + + 

 
 − − + ⋅
 + + 

0B =ϕ

( )( ) ( )

( )( )
( )

( )
( )

2 22 2

2 2
2 2

2 2 2
2 2

1
2

EllipticK 2

EllipticE 2

o
z

IB
r a z r a z

arr a z
r a z

arr a z
r a z

µ
= ⋅

π − + + +

  
  ⋅ − + ⋅ −
  + + 

 
 − − + ⋅
 + + 

Table 2 – MAPLE code for the circular single turn. 

The 3D magnetic field spectrum (fig. 6) and the 3D 
variations of the magnetic flux density in a parallel 
plane with the turn placed to a distance z and in an 
axial section (fig. 7, 8) were plotted on the basis of 
the obtained solutions. The values of the parameters 
are: electric current intensity 100 AI = , turn radius 

2 cma = .

Figure 6: 3D spectrum for the magnetic field in the 
case of the straight circular single turn.  
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Figure 7: 3D variation of the magnetic flux density in a 
parallel plane with the turn placed to a distance  z in 

the case of the straight circular single turn. 

Figure 8: 3D variation of the magnetic flux density in 
an axial section in the case of the straight circular 

single turn. 

3.3. The magnetic field and the vector magnetic 
potential generated by a straight bar with 
the rectangular cross-section and the infinite 
length crossed by the electric current (fig.9) 

Figure 9: The straight bar with the rectangular cross-
section and the infinite length crossed by the electric 

current. 

In the table 3 is given the MAPLE code used for the 
magnetic field computation in the case of the straight 
bar with the rectangular cross-section and the infinite 
length. 
 
>i:=vector([1,0,0]);j:=vector([0,1,0]);k
:=vector([0,0,1]); 
> Rp:=x*i+y*j;Rm:=x1*i+y1*j; 
Rp:=evalm(Rp); Rm:=evalm(Rm);R:=Rp-Rm; 
R:=evalm(R); 
> Rmod:=sqrt(R[1]^2+R[2]^2+R[3]^2); 
J:=Io/(4*a*b)*k; 
> dB:=mu/(2*Pi)*crossprod(J,R)/Rmod^2; 
> dBx:=dotprod(dB,i);dBy:=dotprod(dB,j); 
dBz:=dotprod(dB,k); 
>Bx:=Int(Int(dBx,y1=-b..b),x1=-a..a); 
By:=Int(Int(dBy,x1=-a..a),y1=-b..b); 
Bz:=Int(Int(dBz,x1=-a..a),y1=-b..b); 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

( )

2 2
ln

2 28 2

2 2
ln

2 22

arctg arctg

arctg arctg

x a y bI x aoBx ab x a y b

x a y bx a

x a y b

x a x ay b
y b y b

x a x ay b
y b y b

 + + +µ += − +
π + + −

− + −−
+ +

− + +

    − +
+ − − +    − −    

    + −
+ + −     + +     

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

( )

2 2
ln

2 28 2

2 2
ln

2 22

arctg arctg

arctg arctg

x a y bI y boBy ab x a y b

x a y by b

x a y b

y b y bx a
x a x a

y b y bx a
x a x a

 + + −µ += +
π − + +

− + −−
+ +

+ + −

 − +    + − − +    − −    
 + −    + −     + +    

0Bz =

Table 3 –MAPLE code for the straight bar with the 
rectangular cross-section and the infinite length.  

The magnetic field spectrum in a cross section (fig. 
10) and the 3D variations of the magnetic flux 
density in a cross section (fig. 11) were plotted on the 
basis of the obtained solutions. The values of the 
parameters are: electric current intensity 1000 AI = ,
2 8 cma = , 2 4 cmb = .
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Figure 10: Magnetic field spectrum in the case of a 
straight bar with the rectangular cross-section and the 

infinite length. 

Figure 11: 3D variation of the magnetic flux density in 
the case of a straight bar with the rectangular cross-

section and the infinite length. 

4. CONCLUSIONS 

The paper presents a new approach regarding the 
steady-state magnetic field computation, using 
symbolic analysis. This approach has the following 
advantages: 
• the automatic writing of the general expressions (in 
any point from the space) of the magnetic field (or of 

the vector magnetic potential) by the adequate choice 
of the co-ordinates system (function of the problem 
symmetry) and the accurate calculation of these; 
• the automatic drawing of the 2D and 3D magnetic 
field spectra, allowing that the suggestive images to 
be obtained; 
• the development of the modeling skills, useful  in 
the approach of others more complex problems; 
• facilities in the treating of the limit cases (and of the 
degenerate cases, eventually); 
• a better understanding of the physical phenomena 
corresponding to the analyzed field problem. 
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