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Abstract  The paper presents three procedures for the
sensitivity analysis using auxiliary circuits: the
Bykhovsky Perkins Cruz’s method, the incremental-
circuit approach and the adjoint-circuit approach. All
methods, based on the auxiliary circuits, have needed
an efficient partially-symbolic method for the circuit
analysis. For this, it was elaborated a very good
procedure for the partially-symbolic analysis of the
circuits based on the modified nodal equations and on 
the semi-state equations. This method was implemented
in a program - SYCIAN – Symbolic Circuit Analysis.
SYCIAN program can analysis together the original
circuit and the auxiliary circuit for the complex linear
time-invariant analog circuits. In this paper we will
show that the methods of the sensitivity computation,
based on the auxiliary circuits, become very competitive
ones, if it is used the SYCIAN program. It is also
underlined the advantages and disadvantages of the
three procedures. Some illustrative examples are
presented.

Keywords: Network functions, Lumped linear
circuits, Sensitivity network, Symbolic analysis.

1. INTRODUCTION

In the design of any system (circuit), it is important
to know the effect on the system performance due to
the variations of some system (circuit) parameters. In
the case of lumped, linear, time-invariant circuits, a 
precise measure of this effect can be expressed in
terms of the sensitivity function to be defined next [1-
4]. From a practical point of view, it is not sufficient
for the design specification to be satisfied for a fixed
set of nominal parameter values. A circuit designer
should known the circuit performance is affected by
changes in one or more parameter values. Any effect
of the circuit function or any other circuit
characteristic caused by a change in one or more
circuit parameters is referred to as circuit sensitivity
[1, 2, 4, 7, and 8]. Let F(s) be any circuit function of
interest (driving-point immittances, transfer
immittances, voltage gains, or current gains). At any
particular frequency F is in general a complex
number. The value of F of course varies with the
frequency (s = j ) in general, except for resistive
circuits. Let x be any parameter associated with some
circuit element, x may be the element value (such as 
the impedance or transadmittance) or some physical
parameter (such as temperature or pressure) that
affects the element value. The relative sensitivity, or

simply the sensitivity of a circuit function F, with

respect to a parameter x, denote by , is defined as F
xS

x

F

x
x

F
F

F

x

x

F
S F

x ln

lnd
.

(1)

According to equation (1), we may interpret the

sensitivity  as the ration of the fractional change in

the circuit function F to the fractional change in the
parameter x, provided that all changes are sufficiently
small (approaching zero theoretically). Sometimes we 

refer to  as the normalized sensitivity, in contrast

with the unnormalized sensitivity, which is simply the
partial derivative

F
xS

F
xS

xF / .
A circuit parameter x is called critical if the circuit
sensitivity with respect to this parameter is very large. By
using computer programs, the effects of parameter
changes on the circuit performance can be predicted,
allowing the circuit designer to select a circuit of low
sensitivity in performance to one with higher sensitivity,
while preserving the desired upper and lower limits of the
performance function [1, 2, and 12].
The most important three reasons why parameter changes
should be taken into account in circuit design are:
1. Parameter values of physical devices are not
known exactly before-hand. There is always some
discrepancy between the parameter values in a circuit
model, which represents the physical circuit for 
computational purposes, and the exact parameter
values. This is the problem of accuracy in circuit
modeling and analysis.
2. During the lifetime of a manufactured circuit, parameters
are subject to change through ageing and various
environmental effects, such as ambient temperature and
humidity. A sensitivity analysis is therefore required to find 
out which circuit parameter is critical. 
3. The great spread of parameter values resulting from
the circuit-manufacturing process requires the
knowledge of the circuit performance in a certain range
of parameter values, known as the tolerance range. This
generates the need for tolerance analysis [1-4, 7-9].
There are several reasons for the great importance of
network sensitivity in analog circuit design:
1. The study of circuit sensitivity enhances insight into
circuit behavior, when changes in circuit parameters are
involved. By dividing the circuit parameters into critical

11

Annals of the University of Craiova, Electrical Engineering series, No. 32, 2008; ISSN 1842-4805 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



and non-critical parameters, an effective method is
provided to simplify circuit models for the purpose of
more efficient circuit analysis.
2. Knowledge of the circuit sensitivity can be used as
a basis for comparing different electric circuits. It
helps the circuit designer in selecting the proper
circuit for a specified application.
3. The effect of the manufacturing tolerance inherent
in circuit elements can be investigated by sensitivity
analysis. The notion of circuit sensitivity facilitates
the development of methods for tolerance analysis.
4. Network sensitivity plays an important part in the
design and optimization of reliable circuits.
In present, there are several computer-oriented methods
for the calculation of sensitivities. Methods for the
computation of multiparameter sensitivity are divided
into three classes: 1. Methods based on feedback theory
or the bilinear theorem for linear circuits; 2. Direct
methods, by which the first-order derivatives of interest
(and any desired higher-order derivatives) are computed
directly from the circuit matrix, usually the nodal 
admittance matrix (or modified nodal matrix); 3. 
Indirect methods, which require an auxiliary circuit
associated with the circuit under consideration.
The most of the methods based on the auxiliary
circuits have needed an efficient partially-symbolic
method for the circuit analysis. We have elaborated a
very good procedure for the partially-symbolic
analysis of the circuits based on the modified nodal
equations and on the semi-state equations.[4-6, 9-12].
This method was implemented in a program -
SYCIAN – Symbolic Circuit Analysis [9]. SYCIAN
program can analysis together the original circuit and
the auxiliary circuit. In this paper we will show that
the methods of the sensitivity computation, based on
the auxiliary circuits, become very competitive ones,
if it is used the SYCIAN program.

2. SENSITIVITY ANALYSIS USING 
AUXILIARY CIRCUITS

2.1. Bykhovski Perkins Cruz’s method 

One significant method, first enunciated by
Bykhovski [1,7], was described by Perkins and Cruz 
[7] – called Bykhovsky-Perkins-Cruz’s method. Let
be a linear and time-invariant circuit C. An auxiliary
circuit can be constructed by replacing independent
voltage sources by short-circuits, removing
independent current sources and applying a 
controlled source in the branch of the element x with
respect to which the network sensitivity is desired.
The auxiliary circuit Ca has the same graph as the
original circuit C. In the auxiliary circuit the branch
currents and branch voltages represent the derivatives

 and  respectively. The auxiliary

circuit thus obtained will be called the sensitivity
circuit. Let us consider an RLC network containing

n

xb /i xb /v

R resistors, nC capacitors and nL inductors. The 
following branch relations hold:
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If we assume that the parameter x be the resistance Rk

of a resistor, we can write

k

L
pL

k

C
jC

k

R
kR

k

R

R

i

dt

d
Lu

R

u

dt

d
Ci

R

i
Ri

R

u

p

p

j

j
k

k
k ,,

(3)

According to the relations (3) all the above partial
derivatives of voltages and currents with respect to Rk

are regarded as voltages and currents of a new circuit,
the sensitivity circuit, its branch relations will be
similar to those of the original controlled voltage,
except in the Branch Rk  which is augmented with a 
controlled voltage source in series (as in Table 1).

The circuit
element x.

Branch structure in Ca.

Linear
resistor liniar,
Rk

Linear
capacitor, Ck

Linear
inductor, Lk

CCVS

Cc ie , CcR _

VCCS

Cc uj ,

CcG _

VCVS

Cc ue ,

CcA _

CCCS

Cc ij , CcB _

Table 1: Construction of the auxiliary circuit.
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The two circuits (the original circuit and auxiliary
circuit) will be analyzed together having the same
datum node (see the example).

Figure 1. a) Original circuit C; b) Auxiliary circuit Ca.

Let the circuit of Fig. 1, a be given. It is required to
find the first-order sensitivity . The

sensitivity circuit is shown in Fig. 1, b.
26,CuSd

Running the SYCIAN program [4, 9] we obtain the
following results:
SA4,6_1,17_C12=U28 = .1200e11*s/(4000.+s)^2,

The desired sensitivity  is 

equal to the voltage u
12131213 ,/ CuSCu d

28 from the circuit in Fig.1. b

2

10

2

17,1_6,4
28

12

13

0.4000

102.1

s

s

C

A
u

C

U
(4)

2.2. Incremental circuit approach

Let us consider a linear circuit C consisting of a 
number of standard branches. We shall vary the 
impedance of each branch by a slight amount and
obtain a perturbed circuit Cp. For C, we can write 

KCL: ; KVL: ,0bAI 0bBU (5)

where A and B is the reduced incidence matrix and
fundamental loop matrix, respectively, and Ib and Ub

are the branch current vector and branch voltage
vector, respectively. Since the perturbed circuit Cp
has the same topology as C, for Cp we have

KCL: 0bb IIA ;
(6)

KVL: 0bb UUB .

From equations (5) – (6), we immediately have 

0bIA ; 0bUB , (7)

which indicate that the incremental currents and

incremental voltages
bI

bU have the same constraints

as Ib and Ub. Therefore,  and  could

possibly be the branch currents and voltages of some
circuit C

bI bU

i having the same topology as C, provided
that the branch characteristics of Ci are properly
defined. We shall investigate how branch
characteristics of Ci are to be defined for the purpose
of producing bI  and bU . Consider an element

in C with impedance Z, then

U = ZI. (8)

For the perturbed circuit, the same element is
described by

IZZIIZZI

IIZZUU
. (9)

From equations (8) and (9), we have

IZZIIZU . (10)

Provided that Z (and hence I  and ) is
infinitesimally small, we can neglect higher order
terms and rewrite equation (10) as 

U

ZIIZU (11)

which indicates that in Ci, the branch having
( U , I ) consist of an impedance Z (the original
impedance in C) in series with a current-controlled
voltage sources I Z . This is illustrated in Table 2.

Original circuit C Incremental circuit Ci
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Table 2: Construction of the incremental circuit.

The circuit Ci derived from C according to the rules
of Table 1.2. is an incremental circuit, since branch
currents and voltages in Ci are I ’s and U ’s. It
should be emphasized that the rules in Table 2 for the
construction of the incremental circuit are derived
under the assumption that all parameter changes are 
very small and that second-order effects can be
neglected. Because all the controlled sources from
the incremental circuit are controlling by the
quantities from the original circuits, the two circuits
must be analyzed together (having the same datum-
node) [4, 9 – 12].  The active circuit C shown in Fig.
1, a has nominal values represented in this figure.
The incremental circuit Ci is shown in Fig. 2. Find the
partial derivates of the voltage gain A2,3_1,11 with
respect to the circuit parameters.

Figure 2. Sensitivity calculation by the incremental-
circuit method.

Because, the input voltage Ei = 1 V then A4,6_1,17 = 
U13 and dA4,6_1,17 = du28 (u28).
Running the SYCIAN program [9] we obtain:

dA4,6_1,17 := s*(-4.5*dR14+7.5*dR6+3.0*dR11+

2500.0*dA7_82500000.0*dG9_10+.12e11*dC12+
.12e-3*dB2_3*s^2+.45e-2*s*dR4_5+2.5*dA7_8*s-

.45e-2*dR14*s-2500.000000*dG9_10*s-
.15e-2*dR11*s)/(s+4000.)^2;

and

.
0.4000

102.1
2

10

2

7,1_7,3

12

13

s

s

C

A

C

u

The sensitivity 1217,1_6,4 / CA is identical to the one

obtained by the Bykhovsky-Perkins-Cruz’s method.

2.3. Adjoint circuit approach

Two linear time-invariant circuits C and C  are
adjoint circuits of each other if the following three
conditions are satisfied:

ˆ

1. Both circuits have the same topology; i.e.,

. For controlled sources, we

consider a controlling voltage as that across an open-
branch (an ideal independent current source with j = 
0.0A), and a controlling current as that through a 
short-circuit branch (an ideal independent voltage
source with e = 0.0V).

BBAA ˆand,ˆ

2. If the no independent-source branches of C and C

possess branch impedance matrices ,

respectively, then

ˆ

bb ZZ ˆand,

bb ZZ ˆt . (12)

On the other hand, if branch-admittance matrices

 exist, thenbb YY ˆand,

bb YY ˆt . (13)

In general case, the no source branches of C and C
can always be characterized by hybrid matrices

 thus:

ˆ

bb HH ˆand,

2

1

2

1

2221

1211

2

1 .
b

b
b

b

b

bb

bb

b

b

I
U

H
I
U

ZA
BY

U
I (14)

and

2

1

2

1

2221

1211

2

1
ˆ

ˆ
.ˆ

ˆ

ˆ

ˆˆ

ˆˆ

ˆ

ˆ

b

b
b

b

b

bb

bb

b

b

I
UH

I
U

ZA
BY

U
I

. (15)

For C and  to be adjoint circuits of each other, we
require that

Ĉ

t
22

t
12

t
21

t
11

2221

1211
ˆˆ

ˆˆ

bb

bb

bb

bb

ZB
AY

ZA
BY

. (16)

3. Corresponding independent sources in both circuits
are the same in nature (current or voltage sources),
but need not have the same values. 
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In many applications of adjoint circuits, it is
sometimes convenient to extract all independent
sources a multiport. We denote the port currents and
voltages by Ip and Vp, respectively, and the no source
branch currents and voltages by Ib and Vb,
respectively. In [1, 2] it is proved that if the open-

circuit impedance matrices  (the short-

circuit admittance matrices ) exist for the

multiport created from C and its adjoint C , then

ococ ZZ ˆand,

scsc YY ˆand,

ˆ

ococ ZZ ˆt , .scsc YY ˆt (17)

It is more convenient to construct the adjoint circuit

 from any given circuit C by use of Table 3.Ĉ

Table 3: Construction of the adjoint circuit.

Original circuit, C Adjoint circuit, Ĉ

The multiport create from C and  by extracting all
independent sources can be characterized by hybrid

matrices H and

Ĉ

Ĥ , respectively, as follows:

J

E

J

E

EEJE

EJEE

J

E U
H

U
ZA
BY

U
(18)

and

J

E

J

E

EEJE

EJEE

J

E UHU
ZA
BY

U ˆ

ˆ
ˆ

ˆ

ˆ

ˆˆ

ˆˆ

ˆ

ˆ
, (19)

where the subscript E indicates independent voltage
sources and J indicates independent current sources.

It can be shown that matrices H and Ĥ are related in
the following manner:

tt

tt

ˆˆ

ˆˆ

EEEJ

JEEE

EEJE

EJEE

ZB
AY

ZA
BY

. (20)

An equation relating the changes in H to the changes
in Hb can be derived [1, 2]. This relationship has the
following form:

.ˆˆ

ˆˆ

ˆˆ

2

1

2221

1211t
2

t
1

tt

tt

l

l

ll

ll
ll

J

E

JJJE

EJEE
JE

EEJJ U

I
U

ZA
BY

IU

I
U

ZA
BY

IU

IUI

(21)

For different types of elements in C and , the right side
of equation (21) may be evaluated separately [1 – 9].

Ĉ

The procedure for calculating koko xIxV /,/ , or

kkj xh /  may by summarized as follows>

Step 1. Perform an analysis of the circuit C to obtain
Vb1 and Ib2.

Step 2. Select the excitations for C  such that one
side of equation (20) yields only one term, which is 

ˆ

oo IV , , or kjh , of interest. Perform an analysis

of the adjoint circuit  to obtain  and .Ĉ 1
ˆ
bV 2

ˆ
bI

Step 3. Evaluate the right side of equation (21),
either directly from matrix multiplications or with the
aid to Table 4. From the resultant expression, obtain
the desired partial derivatives.
Consider the circuit shown in Fig. 3, a. Find the
partial derivatives of JEA  with respect to all
parameters of the circuit in Fig. 3. An examination of
equation (20) shows that to have  only, we may
choose U

JEA

E = E15 = 1 V, IJ = J10 = 0 A and 

 A. V,0ˆˆ
15EU E 1ˆˆ

13JI J

Figure 3. Sensitivity calculation by the adjoint-circuit method.

For example, the partial derivate of the voltage gain
A3,4_1,5 with respect the parameter B2_3 has the
following expression:
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2

3

3_2

17,1_6,4

0.4000

*00012.09,1_6,4

3_2 s

s

B

A
S A

B .

The correctness of these results may be verified for
this circuit by evaluating the following expression at 
the nominal element values:

A4,6_1,9  := -
1.*s*C12*R6*(A7_8+1.)*R11/((B2_3*C12*L1*R14+B2_3*

C12*L1*G9_10*R14*R11+B2_3*C12*L1*R6-
1.*C12*L1*R14-1.*C12*R6*L1-1.*C12*R6*L1*A7_8-

1.*C12*L1*G9_10*R14*R11-
1.*C12*L1*R11+B2_3*C12*L1*R11+B2_3*C12*L1*A7_8*R

6)*s^2+(C12*R6*R4_5*A7_8-1.*C12*R6*R14-
1.*C12*R6*R11-

1.*R14*C12*R6*G9_10*R11+C12*R6*R4_5)*s-1.*R14-
1.*R11-1.*G9_10*R14*R11-1.*A7_8*R6-1.*R6);

Evaluating the partial derivative with respect to the
parameter B2_3 and substituting the nominal element

values we obtain the same value for the .9,1_6,4

3_2

A
BS

The adjoint-network approach can be used to derive
second-order derivatives of linear, time-invariant
circuits [1].The adjoint-network concept has been
used to perform circuit analysis when large parameter
changes occur in the circuit [2, 8]. It can also  used
for locating faults and for selecting test point with the
purpose of locating faults in linear and nonlinear
analog circuits [1 - 4]. 

3. CONCLUSION

The three methods for the sensitivity calculations,
presented in this paper, can be applied to a large class
of linear circuit containing: all four types of linear
controlled sources, resistors, inductors, capacitors,
nullors, and any multiterminal or multiport circuit
element having an equivalent scheme made up only
by two-terminal elements and controlled sources.
All sensitivity methods based on the auxiliary circuits
have need of a very good procedure for partial-
symbolic analysis. Our symbolic analysis technique,
based on the modified nodal equations and
implemented into a computing program, is suitable to
analysis the original circuit together the auxiliary
circuit. In this way, the sensitivity computation
becomes more efficient. Higher-order derivatives can
be easily be computed by attaching new higher-order
sensitivity circuits to lower-order sensitivity
networks. One of the disadvantages of the B - P - C’s
method is that in implementing of this method, the 
sensitivity network required for each circuit
parameter of interest is coupled with the original
circuit by inserting an appropriate controlled source.
A large number of parameters x would make the size
of the circuit that could be handled prohibitive.
However, this method allows all frequency and time
responses of both currents and voltages and their
sensitivities to parameter changes to be evaluated in
one computer run. From point of view of the

computational effort, the incremental-circuit
approach is less efficient than the adjoint-circuit
approach. However, the incremental-circuit method
has the following advantages: it provides better
insight the effect of parameter variations, and in the
analysis of the incremental network, the incremental
currents and voltages of all branches are available
from the calculations. Such incremental quantities are
themselves of interest in some applications.
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