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Abstract  The paper deals with the synthesis of a 
neuro-fuzzy velocity controller for a vector control based 
structure associated with an asynchronous motor. The 
solution is found by input – output data generated from a 
model based on standard field oriented control. The 
conditions for having an appropriate such model are 
mainly presented in the paper, the right tuning of the 
initial model being a guarantee for good training data set. 
Different training conditions are taken into account. 
Some special operation conditions of the system, like a 
smooth motion for a transportation system, are 
considered too. 
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1. INTRODUCTION 

The fuzzy logic controllers (FLC) and the artificial 
neural networks (ANN) represent now in electrical 
drives control much more than some exotic tools. Such 
an approach might concern both the process / plant, the 
motor, the power supply and the controllers or the 
whole system, including the interaction with the line. 
Many papers are dedicated to the applications of one 
or more of the artificial intelligence tools in the field of 
electrical drives with induction motor (IM) and 
associated power electronics – [2]. Some books and 
papers are oriented especially on applications – [2], [8] 
– the last one being dedicated to the robotics, drives / 
motion control. It seems that using FLC for the control 
of asynchronous motors is a not very new idea - [20]. 
But the variety of approaches is very big. [1] proposes 
a fuzzy controller for the speed control for an IM with 
constant flux. Some researches concern the modeling / 
identification of the system (complex, non-linear) by 
neural networks or using ANN for the asynchronous 
motor speed estimation in order to improve existing 
control strategies. Others try to find solutions by 
neuro-fuzzy models for detecting faults in the IM.  
Fewer papers are allowed for a vector control (FOC–
Field Oriented Control) including FLC. However, 
some books and papers give more or less detailed 
guidelines for the IM and FOC: [5], [6], [10], [22]. 
Although stated as a high quality strategy for the IM 
control (one of the best, anyway – [12]), there are 
some important drawbacks related to the parameters 
sensitivity. The effort paid to overcome this problem is 

very important. In that meaning, [21] is a proof for 
how complex is any method trying to suppress the 
stator resistance sensitivity. Tuning for an optimized 
FOC by on-line procedures is a very challenging task, 
involving several difficulties and complex methods – 
[14]. [13] gives an ANN - based solution for the 
adaptive control for an induction servodrive. [4] 
proposes an ANN solution for the digital current 
regulation of inverter drives. [9] makes a study for a 
fuzzy supervisor for an optimal FOC in term of the 
best flux estimation. In [24], beside a  modeling of 
induction motor using feed–forward neural networks 
(usable mainly in speed–sensorless estimation), a brief 
list of research directions and results is inserted. One 
of the most representative references in the field, 
especially in terms of a wide range of results using the 
Artificial Neural Network (ANN) for the induction 
motor control, is [25].  
The author proved by some previous results – [15], 
[16], [17] that a well tuned fuzzy loop is able to 
compete and outrun the standard digital algorithms for 
DC servodrive and for the IM systems lead by FOC 
strategy. In some applications, an off-line pre-
processing associated with FLC is justified by a high 
quality of the results; however, the top advantage of 
the fuzzy logic - its simplicity - is diminished. Another 
way is to use only input-output data. Then, a FLC 
design method is based on the training of an ANN. 
After some promising results in substituting the 
conventional speed controller in a FOC structure for 
the IM, the aim of the paper is to analyze now the 
abilities of the FOC - FLC - ANN control part to offer 
good or high quality solutions for a high demanding 
application in terms of torque and current ripple, fast 
transient response, smooth motion, limitation of the 
overcurrent. The results are compared with those 
associated with standard control algorithms. Not only 
that this kind of classical controllers (and their loops) 
are not robust, but their tuning (although stated as well 
settled) seems to be very difficult in complex 
conditions. [23] concerns a PID control robustness and 
shows some recent efforts, ideas and methods, 
revealing how difficult such a task is.  
An initial standard vector control structure (rotor flux 
variant) was considered – [7], [9], [10]. In a previous 
work – [17], [19], the author performed the synthesis 
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of a neuro-fuzzy (N-F) speed controller. Unlike other 
studies and solution that implement a Mamdani 
controller, this one is a Sugeno type. Some basic 
elements concerning this stage will be briefly 
mentioned below. Then, the overall behavior of the 
system will be analyzed comparatively with the 
standard PI speed controller, for some new operating 
conditions: ramp type for the speed input signal, 
impulse torque perturbation, no shock speed 
references, simultaneously application of various 
conditions for the motor parameters deviations, the 
load torque, the speed reversal and the sampling period 
value. 

2. THE INITIAL CONTROL STRUCTURE 
WITH MOTORS, MODELS AND ASSOCIATED 
VELOCITY LOOP PARAMETERS.  

Obtaining a large amount of training data in various 
operating conditions from an experimental platform 
could mean a very hard work, a lot of wasted energy 
and time. Besides, some modifications for motor or 
system parameters are not possible in a controllable 
manner without a big cost. It is much more convenient 
to use a computer model and simulations. For having 
appropriate input-output data (for a good expected 
neuro-fuzzy controller), the first step is to make a good 
tuning of the initial FOC system. The current 
controllers by hysteresis are still kept for their 
simplicity (only one tuning parameter) and because 
such blocks are able to generate directly the control 
pulses for the inverter.  
Fig. 1 gives the image of the initial model of the 
electrical drive system based on a FOC strategy.  
Some additional elements were added in order to 
perform the data acquisition for the training of the 
neural net involved in the fuzzy speed controller 
synthesis. The FOC block contains coordinates 
transformations, flux computation etc. The speed 
error and (electromagnetic) torque reference values 
(thousands data) provided by the PI speed controller 
are stored for the neuro-fuzzy controller synthesis. 

By several tests, a single training set for all operating 
condition was, fortunately, found, corresponding to a 
reversal speed diagram. It is, indeed, a well suited 
training, the obtained neuro-fuzzy controller being 
able to ensure good performance even in operation 
conditions quite different from those of the training 
step. The study was made for several IM, accordingly 
to the power of the target applications, verifying by 
that too the ability of the solution to be valid for a 
quite large motor parameters range. Fig. 2 presents 
the considered IM data. Besides the standard and 
well-known notations, F means the friction factor. 

2.1. The tuning of the initial model. 

For the tuning of the initial FOC structure, the velocity 
loop is simplified in an equivalent form as in the fig. 3. 
From the motion equation, with a PI controller (kp

and Ti  as tuning parameters), the next relations are 
derived: 

   
1

= ×(T-TloadJs+f
)            (1) 

1 1 1
= × k + ×( *- ) - ×Tp LJs+f sT Js+fi

(2) 

After some calculus, identifying the results with the 
standard form, the next algebraic system is obtained: 

            
1

G(s)= 22 s
1+ s+ 2

n n

            (3) 

                  

1
J×T =i 2

n
2

= k +f ×Tp i2
n

            (4) 

Fig. 1. The FOC structure used to perform the neural network training. 
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From ntresp (tresp is the response speed time of 
the system) – see the table 1 – [3], is considered an 
unit damping factor, so:

Fig. 4. A first successful velocity reference.

Fig. 3. For the speed controller tuning. 

Fig. 2 The involved IM data. 

ntresp

0.4 7.7 
0.5 5.3 
0.6 5.2 
0.7 3
1 4.75 

Table 1. The response damping.

ntresp 5% 4.75 gives the tuning parameters: 

              

9.5
k =J× -fp tresp

2
t1 respT = ×i J 4.75

            (5)

2.2. The velocity reference block. 

The first experiment used input–output data acquired 
from a system activated by a step function for the 
reference speed. The results were not able to ensure a 
good behavior in other different operation conditions. 
One of the best choices was a reversal speed diagram, 
as in the fig. 4. The mechanical shock limitation is an 
essential request for the transportation systems. In 
such applications, the training stage for the ANN 
involves other speed profiles. Fig. 5 gives some 
images for a generator model based on a trapezoidal 
diagram for the acceleration. In fig. 5a, the space is 
scaled for having an intelligible image when different 
kinematical variables have very different values 
range. Several results certifying a good tuning of the 
FOC structure are depicted in the fig. 6. The fig. 6.a 
is for M1 at ½ of its rated load torque for a velocity 
reference diagram without mechanical shock. The 
speed follows closely the reference. A similar (very 
good) behavior is shown by fig. 6.b for M2, where 
the electromagnetic torque ripple is much more 
reduced. Fig. 6.c is for M3 having no load, activated 
by a step velocity reference. After an acceptable 
transient regime (small overshoot), the steady state 
speed value is reached. A detailed (zoomed) view of 
the initial starting time – fig. 6.d, reveals another 
aspect certifying the quality of the control system: it 
can be seen a small reversal time just after the 
starting. Indeed, from the movement mechanical 
equation, there is an initial negative derivative: 

0
J

load
T

J

(0)
load

T(0)
mot.

T

0tdt

d
  (6) 
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The fig. 6.e proves that a bad tuning of the loop could 
not only lead to the lost of the performance but the 
control system is more useful. The fig. 6.f concerns a 
variant with speed dependent torque and the fig. 6.g 
gives a zoomed image during the steady-state regime. 
All this parts underlines the importance of having a 
very good source (model, control structure) for the 
in-out data necessary to the design of the neuro fuzzy 
controller. Also, a deep understanding of the system 
nature and functionality is advisable. 

3. IN – OUT DATA FOR ANN TRAINING. 

The “sampl training_1” block from fig. 1 makes the 
In–Out data acquisition for the initial (a PI) speed 
controller. Usually, the samplers are settled to a few 
ms; for most part of the scenarios, the number of data 
couples is several thousand. In fig. 7 are such data: 
a. step velocity reference – the controller is most of 

the time saturated, so the expectations for good 
results are not very high; 

b. reversal speed reference, with more sensitive 
controller output, so predictable good results; 

c. speed reference diagram without mechanical shock 
(for a smooth motion), whit no saturation intervals. 

d. In-Out data from the FLC designed by training an 
ANN with data from b; the lack of any saturation 
interval make confidence in this controller. 

4.   CONCLUSIONS  

The paper made an analysis of an already successful 
electrical drive system (based on a vector control) 
with the intention to generate the best data for 
designing a neuro - fuzzy controller for the speed 
loop. Although the work could seem quite simple 
(training a neural network and then using the 
synthesized fuzzy controller in different operation 
modes), many problems arise for the controller and 
for the system. A first one concerns the choice for the 
training conditions as an essential factor for the 
robustness of the system. The author found an unique 
training set, able to deliver a good controller for 
different variants concerning the system parameters, 
perturbations, operating quadrants, input references 
and sampling time. Some very special (and difficult 
to analyze) aspects for the conventional approach – 
like the magnetic saturation of the motor, special 
design details and others, are no more significant for 
the neuro-fuzzy approach. Passing from two tuning 
parameters of a PI controller to multi-parameters 
tuning of a fuzzy controller (mainly by changing the 
fuzzy sets into infinite possibilities) is an interesting 
and big challenge. The new controller will be 
presented in a subsequent paper, as well as the tuning 
of the new structure, the results and some 
comparisons with the initial results set of the 
conventional control. 
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