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Abstract  The paper is continuing a work for a 
velocity controller synthesis by neuro-fuzzy techniques in 
a vector control  with an asynchronous motor  structure. 
The input – output data prepared in the previous paper 
are applied to a program in order to train a neural 
network able to generate a file for the speed fuzzy 
controller. The fuzzy solution is analyzed comparatively 
with the standard structure that generated it. Different 
training conditions, independent and combined influence 
of the motor parameters, load torque, sampling period 
and operating conditions are taking into account .  

Keywords: neuro-fuzzy controller, ANFIS,  vector 
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1. INTRODUCTION 

Neural networks and fuzzy systems are different 
approaches to introducing humanlike reasoning to 
knowledge-based intelligent systems. The integration 
of fuzzy logic and neural networks seems natural and 
full of benefits – [7]. Artificial Neural Network (ANN) 
learns from scratch by adjusting the interconnections 
between layers. Fuzzy Inference System (FIS) is a 
computing framework based on the concept of fuzzy 
set theory, fuzzy if-then rules, and fuzzy reasoning. 
Integrating ANN and FIS have attracted the growing 
interest of researchers due to the growing need of 
adaptive intelligent systems to meet the real world 
requirements. [10] proposes a taxonomy to describe 
different combinations of neural networks and fuzzy 
systems by Fuzzy Neural Networks, Concurrent Neuro 
- Fuzzy Models, Cooperative Neuro - Fuzzy Models, 
Hybrid Neuro - Fuzzy Models. An example for the last  
architecture is ANFIS (Adaptive-Network-Based 
Fuzzy Inference System) - [5], [6]. The first 
applications of fuzzy neural networks to consumer 
products appeared on the (Japanese and Korean) 
market in 1991. Some examples include [4]: air 
conditioners, electric carpets, electric fans, electric 
thermo-pots, desk-type electric heaters, forced-flue 
kerosene fan heaters, kerosene fan heaters, microwave 
ovens, refrigerators, rice cookers, vacuum cleaner, 
washing machines, clothes dryers, photocopying 
machines, and word processors. [11] provides a 
comparison of artificial neural networks and neuro-
fuzzy systems applied for modeling and controlling a 
real system.  

2. THE SINTHESYS OF THE NEURO-FUZZY 
CONTROLLER AND ITS TUNNING.  

Several induction motors (IM), in the power range 2–
37 kW, were considered for designing an appropriate 
fuzzy logic controller (FLC) for the velocity loop of a 
vector control structure - [8]. The same paper gives 
the IN–OUT data for training the ANN necessary to 
the neuro-fuzzy (N-F) controller. Its synthesis was 
made in different variants: M1, M2 and M3 motors; 
step input, reversal velocity profile and for restricted 
shock; a wide range of the training number epochs; 
different defuzzification methods. The ANFIS 
method / program – [5], [9] used the training data for 
the fuzzy controller synthesis. The Table 1 and the 
fig. 1 reveal the main characteristics of several 
training conditions. The fuzzy sets type was 
generalized bell curve membership function. Their 
distribution, uniform or not, has a visible influence 
on the surface control. The tuning of the N-F 
controllers consist, in fact, in the choice of the fuzzy 
sets number, their distribution and the selected 
defuzzification method: wtaver (WTA - weighted 
average) or wtsum (WTS - weighted sum). The fuzzy 
inference method is a Sugeno type. Some tests with 
several values for the epochs number proved a minor 
or no visible influence on the results in term of the 
training method error (combination between 
backpropagation and least squares procedures). Their 
number, however, could influence directly the 
surface control surface and, by that, some accuracy 
details of the system behavior. The influence of the 
AND/OR operators was not detectable in the shape of 
the surface control. The most important difference in 
the results validity comes from the IN-OUT training 
data that have a major influence on the distribution of 
the fuzzy sets; very seldom they have an uniform 
distribution. Also, different motor parameter sets 
generate N-F controller having very distinctive 
characteristics. Although the operating conditions for 
the gathering of the training data are very important, 
it is possible to have a very good behavior of the 
system when the operating conditions change from 
the training scenarios. The quality of the results is 
mainly appreciated by the evolution of the 
macroscopic variables of the system, like speed, 
torque, currents. 
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3. THE FUNCTIONALITY OF THE SYSTEM 
WTH A NEURO-FUZZY VELOCITY LOOP.  

The image of the system having a neuro-fuzzy speed 
controller is given by the fig. 2. It is able, by some 
specific blocks (like the reference builder, the load 
torque generator) to ensure a wide variety for the 
operating conditions. The fig. 3 presents a 
comparison between the standard FOC control and 
the N-F speed controller, in various conditions - 
different from those in use for the training stage.  The 
response of the N-F velocity loop is better when 
considering a rotor resistance increased with 20 % 
(fig. 3a and b). So, a major drawback of the vector 
control solution, their sensitivity to the resistance 
variation is diminished by the N-F loop. For a speed 
step input (set point) for M3, the fuzzy controller 
brings some important advantages: lower starting 
period and current, no speed overshoot and no 

saturation effect in torque. Another regime (ramp 
reference speed input after a low initial step) is 
revealed in fig. 3c-d. The main differences give a 
higher merit to the neuro-fuzzy solution: the 
maximum motor current is lower, an important 
reduction of the electromagnetic torque ripple is 
obvious, the absence of a saturation effect in torque 
response proves a good sensitivity of the controller to 
the energetic needs of the electromechanical part. 
The shorter time interval with higher acceleration 
torque for the fuzzy solution has consequences on the 
speed tracking, the speed rate having, because of that, 
two different values instead an equivalent unique 
ramp as for the standard control solution. But this 
consequence is not necessarily a bad one. The next 
results – fig. 3e-f show what is happening when an 
important load perturbation occurs –  a short  impulse 
during the steady-state regime, after a direct starting. 
It is visible a better dynamic response during the 

Table 1. Some considered variants for  the ANFIS program.

Fig. 1a  N-F contr.: M2, no shock, 20 epochs. Fig. 1d  N-F contr.: M1, no shock, 30 epochs.

Fig. 1b N-F contr.: M2, no shock, 300 epochs, WTA. Fig. 1e N-F contr.: M2, step, 300 epochs. 

Fig. 1c N/F contr.: M2, no shock, 300epochs, WTS. Fig. 1f N-F contr.: M3, reversal velocity, 30. epochs
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starting of the system for the fuzzy variant (faster, 
lower overshoot and current, better energy 
distribution). Although the effect in the couple 
reaction is similar for both structures, the speed 
response gives an obvious advantage for the fuzzy 
speed controller. This is a proof of the robustness of 
such a solution. Same advantages are also visible for 
a 2-quadrant operation regime. The reversal speed 
profile is better followed by the fuzzy controller – 
fig. 3g-h. The author proved also – [9] that a very 
good behavior of the system is obtained with a fuzzy 
controller considering a wide variation of the 
sampling frequency (for which the standard 
algorithms are very sensitive) with implications in 
real-time experiments. In fact, for all the results, the 
response quality is related with the controller tuning. 
But the tuning of a fuzzy controller for complex plant 
models (or lack of all data of such models) is much 
easier than for standard PID control algorithms. 
However, in all tested conditions the fuzzy loop has 
the same benefits. All results show a better energy 
distribution during the dynamic regime and a non-
saturated operation of the fuzzy controller. The fig. 4 
reveals the ability of the N-F controller to diminish 
also the ringing (ripple) of the control signal and the 
very good tracking of the dependency input (error) – 
output (control). A much more complex situation is  
then  considered - the load torque has a constant part, 
another proportional with the speed and a step 
variation during the deceleration period. The results 
are depicted by the fig. 5. Simultaneously, several 
changes were added to the initial training conditions: 
the value of the resistance is higher, the mechanical 
inertia is double, the sampling period is 10 times 
bigger and the reference has a different profile. The 
general aspect of the results seems quite similar, that 
meaning that both structure are able to manage the 
system in these conditions. However, a detailed 
analyze shows some benefits of the fuzzy variant. 
Indeed, the tracking speed reference is slightly better, 
especially during the acceleration interval, the 
standard solution having a longer delay for the 
steady-state entry. The current envelope reveals a 

better energy management. The interesting aspects 
concerning the first moments of the starting,  
explained in [17] for the pure vector control strategy, 
are found for the N-F results. The negatives initial 
values for the motor couple could be the effect of some 
week capabilities of the fuzzy logic to manage the 
extreme points of a bilocal problem. The fuzzy 
approach supposes a continuity / graduality of any 
variable and evolution; or, the initial time segment is 
highly related with a discontinuity. A tuning of the 
fuzzy sets could reduce the effect. The easiest way is 
to make a non-uniform distribution of these sets, with 
less large areas in the extreme sides. In the speed 
profile, it is detectable o small reversal time just after 
the starting. The interpretation could be done by the  
negative machine torque and an initial negative 
derivative for the velocity – [8]. Another detail from a 
zoomed result proves a right commutation for the 
power inverter. The torque ripple (with a vibrating 
aspect) is the same as for the standard structure, 
slightly reduced. The fig. 6 makes a comparison 
between the standard system and the N-F one, in 
terms of the harmonic behavior for the motor current. 
Again, the  fuzzy  controller  for  the  speed  loop 
seems more appropriate. The fig. 7 contains the 
results for the main variables when the FOC structure 
has a N-F controler and the reference profile ensures 
a low mechanical shock. It can be seen the good 
quality of the speed profile, which follows closely the 
reference signal. It is important to mention the ability 
of the controller to manage also the steady-state 
regime – a quite long one. Fig. 8 gives the system’s 
evolution when the neuro-fuzzy controller was 
trained for a step speed input and the real reference 
velocity input is  a  reduced  shock  type  one. The  
behavior  is  an unexpected good one, being directly 
visible a forced control during the first acceleration 
time – an useful property in certain operating 
conditions: big torque load, important initial frictions 
or stiffness torque. The torque produced by the motor 
has a strong initial shock and the system deceleration 
happens in good conditions – “naturally”, although in 
the training stage this regime is not considered. 

Fig. 2 The model with speed fuzzy controller. 
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a. b.

c. d.

g. h.

e. f.

Fig. 3. The system equiped with M3 with the standard FOC structure (left side) and the N-F velocity 
controller (right side) in different operating conditions. 
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The results reveal also the ability of the N-F 
controller to make a good job when the operating 
conditions (the steady state speed value, the duration 
of the cycle) are largely different from the training. It 
is import to mention another quality of the N-F 
controller: a very low velocity error (0.1 %) during 
the final standstill regime. However, the real-time 
control algorithm must detect by a specific task the 
final rest condition and to deliver a simple OFF 
control signal to the drive (not using a computed N-F 
control), followed by a specific control value for 
keeping the system in rest when the load is 
energetically active. The velocity ripple during the 
steady-state regime (less then 0.01 %) has no 
mechanical meaning. The N-F controller can also 

manage the drive with a reduced mechanical shock 
and a longer or a shorter cycle as in the training 
stage.  

4. CONCLUSIONS 

The synthesis of a velocity fuzzy controller for vector 
control is made by using a knowledge base and a 
computer aided tool for neural network - the ANFIS 
program. Although such a controller has an infinite 
parameters set, the tuning begins with the training set 
preparation. The main influence of this data is on the 
distribution of the fuzzy sets. Passing from two tuning 
parameters of a PI controller to multi-parameters 
tuning of a fuzzy controller (mainly by changing the 

a. b.
Fig. 5. The system variables for a complex regime with standard controller (a) and a fuzzy one (b) – M3. 

a. b.
Fig. 6. Standard (FOC) structure – a) and N-F control – b): current – harmonic analysis. 

a. b.
Fig. 4. The In – OUT data for the speed controller for the FOC (a) and N-F (b) variants. 
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fuzzy sets into infinite possibilities) is an interesting 
and big challenge. Several training operating 
conditions were considered: for a step, ramp, reversal 
and having no mechanical shock input references. 
The file for synthesis of the controller obtained by a 
single training condition scenario (a reversal speed 
profile), is able to deliver very good results in many 
other conditions that those from the training stage, as: 
large variations of the system parameters, strong   
perturbations, other operating quadrants, input  
references and sampling values. The comparison 
between the initial (standard) structure and that based 
on a neuro-fuzzy speed controller, in different 
operation conditions, underlines obviously some 
advantages of this last one, in terms of the dynamic 
index, energetic criterions and robustness. Some very 
special (and difficult to analyze) aspects for the 

conventional approach – like the magnetic saturation 
of the motor, special design details and others, are no 
more significant for the neuro-fuzzy approach. The 
solutions delivered could be sometimes, amazingly, 
smarter than those obtained in a classical manner, 
taking into account some hidden details. In this 
context, some unexpected results concerning 
functional details / moments of a simulated regime, 
prove that the neuro-fuzzy controller is, indeed, an 
intelligent one. 

References 

[1] Abraham A., It is time to Fuzzify Neural 
Networks!, Tutorial, ICIMADE, 1-3 June 2001, 
Fargo, USA, pp 253 - 272. 

[2] Altrock C. von, Fuzzy Logic and NeuroFuzzy 
Applications Explained,  Prentice Hall PTR, 1995.  

Fig. 7 The system behavior for: M1 – N-F controller – 
reduced shock - constant load 50 % - 30 epochs. 

[3] Bose B.K., Fuzzy logic and neural networks in 
power electronics and drives, IEEE Ind. Applic. 
Magazine, pp.57 –63, Vol.6, May/Jun 2000.  

[4] Fuller R., Neural Fuzzy Systems, Abo Akademi 
University, Abo 1995. 

[5] Jang J.-S. R., ANFIS: Adaptive-network-based 
fuzzy inference system, IEEE Trans. Syst., Man, 
Cybern., vol. 23, pp. 665–684, May/June 1993.  

[6] Jantzen J., Neurofuzzy Modelling, Technical 
Univ. of Denmark, Depart. of Autom., Lyngby, 
DENMARK, Tech. report no 98-H-874, 1998. 

[7] Kasabov N.K., Foundations of Neural Networks, 
Fuzzy Systems, and Knowledge Engineering, A 
Bradford Book, The MIT Press, Cambridge, 
Massachusetts, 1998. 

[8] Mihai D., On the Design of a Neur-Fuzzy 
Controller for the Vector Control Strategy. Data 
Preparing., ICATE’08, Craiova, Romania, 2008. 

[9] Mihai D., Vasile C. Vector Control with Fuzzy 
Speed Loop for an Electrical Drive System with 
Asynchronous Motor, Bull. Polytech. Inst. Iassy,
Romania, 2004,  vol. L (LIV)/5, pp. 1037-1042. 

[10] Nauck D., Beyond Neuro-Fuzzy: Perspectives and 
Directions, Third Europ. Congr. on Intell. Techn. 
and Soft Comput., (EUFIT'95), Aachen, 1995, pp. 
1159 -1164. 

[11] Vieiraa J., Diasb F. M., Mota A., Artificial neural 
networks and neuro-fuzzy systems for modelling 
and controlling real systems: a comparative study, 
Eng. Appl. of Artif. Intell. 17 (2004), pp 265–273. 

[12] Wishart M. T., Harley R. G., Identification and 
control of an induction machine using artificial 
neural networks, Conf. Rec. IEEE IAS Annu. 
Meeting, Toronto, Ont., Canada, Oct. 1993, pp. 
703–709. 

[13] Woei Wan Tan, Hong Huo, A Generic 
Neurofuzzy Model-Based Approach for Detecting 
Faults in Induction Motors, IEEE TRANS. ON 
IND. ELECTR., VOL. 52, NO. 5, OCT. 2005, pp. 
1420-1427. 

Fig. 8 The system behavior for: M 2 – N-F controller 
– reduced shock - constant load 50 % - training for 

step speed input. 

288

Annals of the University of Craiova, Electrical Engineering series, No. 32, 2008; ISSN 1842-4805 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------




