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Abstract � Currently there are several numerical 
methods for inverting the Laplace transform (ILT) but 
not all of them are used in electrical engineering. The 
main difficulty regarding the electric circuits is, among 
others, to find the transfer function poles represented 
by high degree polynomials. 
In this paper, we propose a numerical method based on 
Fourier series for inverting Laplace transforms in the 
case of transient analysis. 
To accelerate the convergence of Fourier series were 
used acceleration algorithms. 
This method has been verified and validated on a 
program implemented in Matlab.  
Two methods are used for the verification and 
validation of the numerical calculation results. The first 
method uses a comparison with exact solution, if it has 
an analytical form and the second method compares the 
performance of the software developed by the authors 
with the results published by other authors who have 
used techniques more or less different. 

Keywords: Laplace transform, numerical methods, 
verification, validation.  

1. INTRODUCTION 

Laplace transforms (LT) are powerful tools in many 
problems of mathematics, physics, optics, electrical 
engineering etc. 
LT is a method of solving differential equations, 
which are transformed into algebraic equations. 
Analytical or numerical methods can be used to 
convert the solution obtained from frequency domain 
in time domain. 
ILT is a difficult problem, especially for complex 
circuits, which is why lately LT use was avoided [1]. 
The Laplace transform of a function f(t), defined for 
all real numbers t � 0, is the function F(s), defined 
by: 
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where s is a complex number: �� is ��  
The inverse Laplace transform is: 
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The main difficulty is to determining the transfer 
function poles. 

This paper proposes that the ILT to be performed by 
a numerical method based on Fourier series, method 
which was first proposed by Dubner and Abate [2].   
Acceleration algorithms are used to accelerate the 
convergence of the obtained Fourier series.   
ILT method was implemented in Matlab. 
Some examples of this method allow verification and 
validation. 

2. NUMERICAL METHOD FOR ITL  

The proposed method is based on the Bromwich 
integral, which enables functions of time (based) on 
the relationship [3]: 
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This integral can be written as: 
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which is a Fourier integral. 
Integral approximation by Fourier series resortes to the 
trapezoidal rule and uses a time discretization error 
[4]. 
For a step size h, we obtain: 
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After successive transformations [4] and replacement 
th 2/�� and tAb 2/� , we obtain the following form: 
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where the first term coincides with the trapezoidal-rule 
approximation and the second term gives the 
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discretization error associated with the trapezoidal 
rule. 
If  1)( �tf  for all t, then the error is bounded by 
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which is approximately equal to Ae�  

when Ae�  is small. Hence, to have at most 
��10 discretization error, we let 10log��A . 

Since the series from (4) is alternant and therefore 
convergent is slow, the algorithms for accelerating the 
convergence should be used. 
One of the most elementary acceleration techniques is 
Euler summation [5].This technique is based on Euler 
summation, which for an alternating series is very 
simply described, as the weighted average of the last m 
partial sums of the binomial probability distribution 
with parameters m and p=1/2. 
If we rewrite equation (5) as the partial sum: 
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then the ILT is given by: 
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where 
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Another technique is the epsilon algorithm [6]. 
The Epsilon algorithm for accelerating the 
convergence [7] is done by computing a diagonal 
Padé approximation of this power series. 
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where  )/exp( Ttjkz ��  and T=max(t)*2. 
To achieve calculations is used an algorithm based on 
continued fractions: 

))1/(1/(),( 210 zdzddNzv N���� �  
The coefficients of the continued fractions are 
computed using the sequences i

re  and i
rq  based on the 

epsilon algorithm [8]: 
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Then the ILT is: 

 TNzvetf t
epsilon /)],(Re[)( ��  (9)  

Based on (7) and (9), the programs were developed in 
Matlab [9], which compute ILT. 

3. VALIDATION OF NUMERICAL METHODS 
DEVELOPED 

Two methods are usually used for the verification 
and validation of the numerical calculation results. 
The first method uses a comparison with exact 
solution, if it has an analytical form and the second 
method compares the performance of the software 
developed by the authors with the results published 
by other authors who have used techniques more or 
less different. 
For this purpose, the computer program developed in 
Matlab has been applied for several transfer functions 
with different data regarding the type phase described 
by the LT (damped oscillatory, a periodic damping 
with varying degrees).  

3.1. Validation by comparison with exact solution 

Consider the following rational function: 
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which is critic damped impulse with exact solution 
[1]: 

 � �)2exp()1()exp(2)( ttttf �����  (11) 

First the function from (10) was inverted  by Fourier 
series methods according to equation (6), and then 
the two acceleration algorithms are used, and the 
obtained  results were compared with exact values.  
Matlab programs were tested on different levels of 
discretization error. 
Table 1 shows the numerical values of ILT obtained 
through software programs developed in Matlab and 
the exact values, and the computing time. 
If the function f(t) is calculated according to (6), 
without acceleration algorithms, we obtain a 
computing time of 0.6 sec and 0.5 sec for 310� and 

110�  discretization error. 
Analyzing the results in Table 1, we note a 2-3 fold 
reduction in computing time, without affecting the 
accuracy of calculation. 
For the 310� discretization error, the feature given by 
the exact function overlaps the feature obtained by 
the proposed method; we note small differences 
between the two features illustrated in Figures 1 and 
2 for a 110�  discretization error.  
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t[sec] 
310�  

tcomp=0.36s 

110�  
tcomp=0.32s 

310�  
tcomp=0.26s 

110�  
tcomp=0.21s 

 
 

)(tf  
Exact value 

0.1 0.0060 0.0073 0.0060 0.0071 0.0060 
0.2 0.0204 0.0234 0.0203 0.0231 0.0203 
0.3 0.0388 0.0430 0.0387 0.0413 0.0387 
0.4 0.0584 0.0630 0.0583 0.0607 0.0583 
0.5 0.0775 0.0819 0.0774 0.0795 0.0774 
0.6 0.0947 0.0986 0.0946 0.0966 0.0946 
0.7 0.1095 0.1129 0.1094 0.1112 0.1094 
0.8 0.1216 0.1243 0.1215 0.1231 0.1215 
0.9 0.1309 0.1331 0.1308 0.1323 0.1308 
1 0.1375 0.1393 0.1375 0.1384 0.1375 

Table 1: Comparing the results with exact solution 

  
 

 

 

 

 

 

 

Figure 1: ILT_Euler vs (11) 

 

 

 

 

 

 

 

Figure 2: ILT_epsilon vs (11) 

In figures 1 and 2 are plotted ILT for function (10) by 
Fourier series method (curve 1) and ILT exact (curve 
2), represented by function (11). 
Plotting was done in order to provide an intuitive idea 
of the accuracy of computation results of the numerical 

ILT, which shows that the differences are absolutely 
negligible for technical applications. 

3.2. Validation by comparison with published 
results 

By this method, a function is inverted and compare 
with results of other authors. 
The paper [10] provides ILT results for the following 
function: 
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which is a poorly damped oscillating impulse. 
In Table 2, the results obtained by the proposed 
method (discretization error is 310� ) are compared to 
the results provided in [10]. 
 

t[s] Eulertf )(  
tcomp=0.30s 

epsilontf )(  
tcomp=0.27s 

)(tf [10] 

0.01 0.0652 0.0652 0.0651 
0.02 0.2371 0.2371 0.2370 
0.03 0.4747 0.4746 0.0745 
0.04 0.7342 0.7342 0.7341 
0.05 0.9753 0.9754 0.9752 
0.1 1.1808 1.1808 1.1807 

0.15 0.4367 0.4367 0.4366 
0.2 0.4903 0.4903 0.4901 

0.25 0.7552 0.7552 0.7552 
0.3 0.5805 0.5805 0.5804 

0.35 0.4842 0.4842 0.4839 
0.4 0.5850 0.5850 0.5849 
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0.45 0.5816 0.5816 0.5816 
0.5 0.5256 0.5256 0.5254 
0.6 0.5609 0.5609 0.5607 
0.7 0.5402 0.5403 0.5401 
0.8 0.5743 0.5743 0.5741 
0.9 0.5458 0.5458 0.5457 
1 0.5453 0.5453 0.5453 

Table 2: Comparing results from different techniques  

 

 
 
 

 
 
 
 
 
 

 

Figure 3: ITL_epsilon vs f(t)[10] 

Since the results obtained for ILT with the two 
acceleration algorithms are comparable, in Figure 3 
the ILT with epsilon algorithm was presented, 
because it requires shorter computing time. 

4. CONCLUSIONS 

The Laplace transforms inversion by Fourier series 
method is an efficient computing technique. 
The ILT by Fourier series method was tested on 
several functions with different character in terms of 
phase-type described by LT (damped oscillatory, a 
periodic damping with varying degrees). 
By using algorithms to accelerate the convergence of 
series, the computing time is reduced by 2 to 3 times 
(0.2-0.3 sec against 0.5-0.6 sec) 
In the examples described in this paper, the epsilon 
algorithm proves more efficient results than the Euler 
algorithm in terms of computation time and accuracy.  

Note that when using accelerating algorithms the 
results technically acceptable can be obtained even 
when using higher discretization (mesh) errors. 
The method will continue to be used for other types 
of LT in order to determine the applicability limits of 
the method. 
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