
SENSORLESS CONTROL OF INTERIOR PERMANENT-
MAGNET SYNCHRONOUS MOTOR BASED ON EXTENDED 

KALMAN FILTER 

Laurentiu-Ionel DIACONU 

“Transilvania” University of Brasov, laurentiu.diaconu@unitbv.ro 

Abstract � This paper presents a sensorless position 
control concept for an interior permanent magnet 
synchronous motor (IPMSM). Conventionally the speed 
of an IPMSM can be measured conveniently by d.c. 
tachogenerators, which are nowadays brushless d.c. 
tachogenerators. Rotor position can be also measured 
by using electromagnetic resolvers or digitally by using 
incremental or absolute encoders. Furthermore, an 
electromechanical sensor increases the system inertia, 
which is undesirable in high-performance drives. It also 
increases the maintenance requirements. In very small 
motors it is impossible to use electromechanical sensor. 
In a low-power torque-controlled drive the cost of such 
a sensor can be almost equal to the other costs. In 
drives operating in hostile environments, or in high-
speed drives, speed sensors cannot be mounted. For 
motor spinning condition it allows estimation of rotor 
velocity and position of an IPMSM drive using a simple 
Kalman filter algorithm (EKF) with stator voltages and 
currents measurements. This model is more complex 
than the one in surface-magnet synchronous motors due 
to magnetic circuit asymmetry. Along with the extended 
Kalman filter, are presented the realized filter loop, the 
filter block and filter algorithm. Next, are presented the 
experimental results for motor starting and steady-state 
no-load and full-load condition in order to validate the 
EKF’s capability to correctly estimate the system states 
while providing the feedback quantities to the velocity 
and position controllers. 

Keywords: extended Kalman filter (EKF), interior 
permanent magnet synchronous motor (IPMSM), 
position and velocity estimation, sensorless drive. 

1. INTRODUCTION 

To reduce total hardware complexity and costs, to 
increase the mechanical robustness and reliability of 
the electrical drives, and to obtain increased noise 
immunity, it is desirable to eliminate electro-
mechanical sensors in vector controlled and direct 
torque controlled drives. 
Great efforts ([1] – [8]) have been made to introduce 
speed and/or shaft position sensorless torque 
controlled (vector and direct torque controlled) 
drives. The terminology ‘sensorless’ refers to only 
the speed and shaft sensors: there are still other 
sensors in the drive system (e.g. current sensors), 
since closed-loop operation cannot be performed 
without them. 

2. EXTENDED KALMAN FILTER 

The basic idea in defining an extended Kalman filter 
consists in the relinearization around every state 
estimation � �kX̂  immediately after being calculated 
at the corresponding tk. Just after achieving a new 
state estimation, the nominal state trajectory is 
improved and introduced into the algorithm. This 
enhances the validity of the assumption by which the 
deviation from the reference trajectory is sufficiently 
small so as to allow the application of the 
linearization techniques of perturbations with 
optimum results. 
Suppose the system described through its dynamical 
model [3]: 

 � � � �� � � � � �tWtGttUtXfX nn ��
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The algorithm of the extended Kalman filter includes 
the measured quantities Y(tk) by means of the 
equations [3]: 
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matrix of the partial derivatives: 
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The estimation is propagated forward, toward the 
next sampling instant k+1 by integrating the 
equations: 
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from time tk to tk+1, by using initial conditions 
provided by equations (3 and 4). 
The temporal propagation relations can be 
equivalently written as: 
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Notably, the matrices �, H, K and P are evaluated 
knowing the most recent estimated value of the 
nominal state trajectory. Consequently, the equations 
of propagation and recalculation of the covariance of 
the estimation error are coupled with the state 
estimation relations. The covariance and 
amplification Kalman matrices cannot be calculated a 
priori without knowing state estimation and the 
currently measured values, as well. 

3. THE KALMAN FILTER ALGORITHM 

The most important aspect for a precision simulation 
is a perfect separation between the continuous 
process and the discrete one within the complete 
system. The Kalman algorithm and the control 
algorithm are the discrete components of the process, 
while the inverter and motor operation are the 
continuous components. Therefore, the first step in 
designing the Kalman filter consists in introducing an 
additional block which considers the sample-hold 
process of the continuous quantities acquired from 
the continuous system. This block is named Unit 
Delay (z-1) and is intended for the sampling of all 
vector components applied to its input at regular 
intervals, set by the sampling period, holding the 
acquired value until a new sampling arrives (Fig. 1 – 
“vsa”, “vsb”, “isa” , “isb” are the measured voltages 
and currents respectively in the stator phases).  

Apart from current and voltage sampling, Unit Delay 
also provides sampling of the output vector of the 
estimated states. Thus, to the Kalman filter will be 
introduced 9 discrete input signals, which are 
modified every Ts sec. (Ts is the sampling period).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To obtain a clear picture on the Kalman filter 
algorithm and on the way it was constructed, we 
present in the following the logical diagram of the 
algorithm. By examining the logical diagram in Fig. 
2, we notice that the state vector estimated at time 
k+1 depends on the previous measurements and 
estimations, considered at time k. Therefore, the 
measured quantities and the current estimations are 
introduced into the Kalman algorithm block delayed 
by one sampling step. 
The Mux and Demux blocks are intended for 
combining and respectively decomposing the input 
quantities into vector quantities and into their 
components as well. 
The Kalman algorithm included in the Kalman 
algorithm block is designed as a common Matlab 
function (M-Function) which returns the current 
estimation vector and the covariance matrix P at 
every sampling period. While the estimates are 
reintroduced directly at the input, the covariance 
matrix is defined as a global variable updated at a 
every iteration. 
The Kalman filter’s mathematical model is given by: 

Figure 1: Kalman filter block 
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where the state variable are di , qi , � , �  and sm  

( di  and qi  are current space vector components in 
rotor reference frame; �  - rotor electrical speed; �  - 
rotor position; sm  - load torque), �v  and �v  are 
voltage vector components in the stator reference 
frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The load torque sm  is a state mechanical variable 
with slowly variation and it can be considered 
constant during one sampling period. � �tW  is a 
process noise which take into consideration the 
modeling errors (nonlinears, saturations, a.s.o.), noise 
which is introduced to the measurement elements and 
parameters variations around about mean value. 
A critical part of the design of EKF is to use correct 
initial values for the various covariance matrixes , Q, 
R, and P. the system noise covariance Q accounts for 
the model inaccuracy, the system disturbances, and 
the noise introduced by the voltage measurements 
(sensor noise, A/D converter quantization). 
The noise covariance R accounts for measurement 
noise introduced by the current sensors and A/D 
quantization. 
The initial state covariance P0 can be assumed 
diagonal and the elements of first diagonal are the 
mean-square error to knowledge the initial 
conditions. 
For P0, Q, and R matrices was used the following 
values: 
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The motor parameters are: 2�p , 57.0�sr ohm, 
108.0�� f Wb, 72.8�dL mH, 8.22�qL mH, 

100�smV V, 10�smi A, 200��N rad/s. 

START 

Introducing the covariance matrices: Q, P, P0
Read the system parameters 

Introducing the initial state X0 

Read the measured quantities U(k), 
Y(k) 

X
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Updating the estimates and covariance: 
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CONTINUE 

Figure 2: Simplified block diagram of the Kalman 
filter algorithm 

88

____________________________________________________________Annals of the University of Craiova, Electrical Engineering series, No. 34, 2010; ISSN 1842-4805 



4. SIMULATIONS RESULTS 

The dynamical behavior of the motor is obtained by 
solving the differential equations of the machine by 
using the Runge-Kutta of order 4 integration method 
along with Euler’s integration method. Both methods 
have generated similar results, but the simulations 
time in the second case is generally much shorter 
than in the first one. The input quantities of the motor 
model are the phase voltages generated by a 
hysteresis current controller of PWM-type. All tests 
were performed in closed loop. 
In the following, we shall present some significant 
results for different operating modes. 

4.1. Starting and no-load operation at 150 rad/s. 

Both the motor and the Kalman estimator are started 
from standstill, while the motor is accelerated to the 
desired speed of 150 rad/s (Fig.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The initial speed value is zero and the motor is 
supposed to start with an initial flux angle of 0 
degrees. During functioning no load torque is applied 
and the friction torque is neglected. Also, no 
variation of motor parameters occurs during 
functioning. 

We notice that the Kalman filter correctly estimates 
the angular velocity at non-load operation. The most 
important velocity error is obtained during the 
starting process, when the absolute value difference 
between real angular velocity and the estimation one 
is of approximately 7 rad/s, which represents an error 
of 4.6%. It can be observed that the estimated 
velocity is higher than the real one due to the larger 
initial error of load torque estimation. 
The Kalman filter estimates a negative load torque at 
the shaft during the first 10 ms which would mean 
that the motor is driven externally from its shaft. 
However, after initiating the Kalman filtering 
process, the estimated load torque approaches its real 
value determining the estimated velocity to approach 
the actual shaft speed. The first settling time of the 
transient process is about 20ms after which the 
operation settles. 
The load torque converges at the expected value of 0 
Nm and the estimated angular velocity is kept, with 
negligible error at real velocity value. 
Notably, the drive is controlled by using as feedback 
quantity precisely this estimated angular velocity 
with the desired outcome, that is, operation with a 
steady-state error below 1%. At the same time, for 
calculating the current references of the hysteresis 
controllers from the mobile system into the fixed 
system, we used the estimated angle �̂ . The 
estimation error is presented in Fig. 4b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: a) Estimated load torque at staring and no-
load steady-state running ; 

            b) Estimation error of position angle. 

Figure 3: a) Variation of real angular velocity and of 
estimated velocity at no load starting 
and stady-state running (150 rad/s) 

            b) Angular velocity error at starting and 
steady-state. 
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We notice a constant steady-state error of about 0.16 
rad which is reflected only as a steady-state velocity 
error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sampling period for this first set of simulations 
was set to 400 s, which is considered to be sufficient  
to allow the signal processor to perform the 
calculations. 
Figure 5 presents the transversal and longitudinal 
components of the stator currents. 
We used the control algorithm, presented previously, 
which calculates both current components by means 
of maximum torque per ampere zones and field 
reduction. The feedback quantities of the current 
computing blocks are the currents estimated with the 

angle �̂ . If we compare these currents 
	
sdi and 

	
sqi  

with the real ones from the model of the motor, we 
notice the fact that the Kalman filter correctly follows 
the current components as well, but with a certain 
error in the interval 0 – 0.1s when the filter seems to 
experience a self-tuning process. 

4.2. The 0.9 Nm torque step applied during steady-
state running at 150 rad/s. 

In this situation, the motor and the Kalman filter 
operate at steady-state, at a velocity of  150 rad/s. 
After 0.8 s, a 0.9 Nm load torque is applied to the 
motor shaft. The Kalman filter is unaware of the 
applied load torque but detects the perturbation 
arising within the system through the magnitude of 
the system’s covariance matrix. Consequently, the 
Kalman amplification increases and tries to minimize 
the observed estimation error. The real velocity of the 
motor decreases faster since the load torque acts 
instantaneously on the motor shaft (Fig. 6 and 7).  
The Kalman filter is slower than the real process. 
Firstly, the state quantity which corresponds to the 
load torque begins to increase. The results are a 
gradual decrease of the estimated speed, while the 
effect observed in the speed controller is an increased 
reference in the transversal component of the current 
iq

*. This component will increase continuously until 
the estimated load torque reaches the steady-state 
value (0.9 Nm – Fig. 8) 
Meanwhile, the real speed is amplified due to the 
arising electromagnetic torque subsequent to the 
increase of the transversal current. 
The electromagnetic torque tends to equate the load 
torque and the speed will be resettled to its initial 
value (with a certain steady-state error). 

5. CONCLUSIONS 

This paper presents an EKF for the sensorless control 
of an IPMSM. Departing from the linearized Kalman 
filter, we obtained the extended Kalman filter. In 
comparison with other papers [5-9], we introduce a 
novel supplementary state – load torque. 
 
 

Figure 5: Real and estimated components of 
the stator currents. 

Figure 6: a) Real and estimated velocity when 
appling a load torque; 

            b) Angular velocity error for applied 
step 

a) 

b) 
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The estimation of this variable - when it is include to 
the state space and therefore in the system matrix 
(see equation (10)) - give a high improvement to the 
estimation of the mechanical behavior of system. 
Using proposed filtering algorithm we have 
simulated and verified, at no-load and at full load, the 
capability of the filter to correctly estimate the 
control system states of the IPMSM. 
The load torque has been estimated as well, an aspect 
which is less known from technical literature. 
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Figure7: a) Estimated load torque when applying 
a real torque of  0.9Nm at time 0.8s; 

            b) Angular estimation error at load 
torque. 

Figure 8 : Real and estimated current components 
at step torque. 
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