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Abstract − This paper studies the possibilities of 
decomposition of the current in three-phase, three-wire 
systems based on the classic p-q theory proposed by 
Akagi and further developed and, respectively, on the 
Czarnecki’s theory. In the case of distorted current 
absorbed by a nonlinear load, the resulted components 
can be used to generate the reference compensating 
current in three-phase active power filters. As the 
major compensation goal of both current harmonics 
and reactive power involves a current drawn from the 
network which has the same phase and shape as the 
grid voltage, the attention in current decomposition is 
especially directed to the active component. Two case 
studies were analyzed by simulation in Matlab/Simulink 
environment, under both sinusoidal and nonsinusoidal 
voltage conditions. Linear and nonlinear loads were 
taken into consideration. For each case, the current 
components had been calculated according to Akagi’s 
original decomposition, the second interpretation of the 
p-q theory, and Czarnecki’s expressions based on 
Current Physical Components theory. It is shown that 
only the Current Physical Components – based 
decomposition is able to provide a correct active 
component of the load current as defined by Fryze for 
single-phase circuits, irrespective of voltage shape and 
load nonlinearity. Some additional modifications should 
be made in p-q based current decomposition in order to 
obtain an active current which preserves the voltage 
waveform under nonsinusoidal voltage conditions. 

Keywords: active current, CPC theory, non-sinusoidal 
voltage, p-q theory.  

1.  INTRODUCTION 

The non-sinusoidal conditions analysis is important 
because of the disturbing effects produced to the 
power grid. 
In the power grids working with distorted current the 
power factor diminishes and the existing reactive 
power cannot be compensated using capacitive 
compensators, due to the oscillating circuits that this 
capacitors form with the grid reactance which leads 
to the amplification of some harmonic currents 
existing in these circuits.  
Active power filtering is an efficient method to 
improve the shape of the current absorbed from the 
power grid and to improve the power factor. 
The purpose of this paper is to analyze the current 
decomposition possibilities based on the classical p-q 

theory [7] and its development [3] using some case 
studies. 

2. THE p-q THEORY 

Starting from expression of the instantaneous 
apparent complex power [1],  
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H. Akagi has proposed the compensation for the AC 
components of the real and imaginary parts of the 
complex instantaneous apparent power, respectively 
the calculation of the reference currents of an active 
filter with the following expression: 
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Developing the scalar product, the expression (2) 
becomes: 
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On this basis, Akagi, Nabae and their co-authors 
defined [1]: 
- the instantaneous active current with the 
following components: 

 
p2u

qu

3
2

aqi

p2u
du

3
2

adi

=

=

  (4) 

- the instantaneous reactive current with the 
following components: 
-  

 q2u
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3
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These definitions had been criticized by Czarnecki 
[5], who found some examples in which the current 
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defined with (4) is not corresponding to active power, 
and the current defined with (5) is not corresponding 
to reactive power. This observation is justified 
because, as it was shown, p and q contain both 
active/reactive power and the components 
corresponding to the non-sinusoidal and 
asymmetrical regime. This vagueness can be 
eliminated by the second interpretation of the p-q 
theory, defining four components for the distorted 
current [2], [8], which emphasize the mean values (P 
and Q) and the alternative components (p~ and q~).  
Now, expression (3) becomes: 
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Based on the previous expression, the current 
components can be defined: 
- the active current vector, ia, with the following 
components: 
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- the reactive current vector, ir, with the following 
components: 
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- the supplementary useless current vector for the AC 
component of p, isp, with the following components: 
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- the supplementary useless current vector for the AC 
component of q, isq, with the following components: 
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3. CURRENT PHYSICAL COMPONENTS 

Considerations in this Section are confined to three-
phase, three-wire circuits, shown in Fig. 1(a), with 
linear, time-invariant loads supplied with a sinusoidal 
symmetrical voltage of positive sequence.  
Because a three-phase, three wire load was taken into 
consideration, the phase voltages were calculated 
based on the line measured voltages. 
For any such load there exists an equivalent resistive 
and balanced load, shown in Fig. 1(b), that at the same 
voltage has the same active power, P, as the original 
load [4]. 
 

               
                                

            (a)                                  (b) 

Figure 1: (a) Three-phase load and (b) its equivalent 
load with respect to active power, P 

The active power of the load in Fig. 1(b) is equal to: 
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Thus, this load is equivalent to the original load with 
respect to the active power, if its phase conductance 
has the value: 
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The line current vector of the equivalent resistive 
load is equal to: 
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and is referred to as the active current.  
It is the smallest current needed for energy permanent 
conversion in the load with power P. 
Under non-sinusoidal voltage conditions, the grid 
voltage can be also decomposed, using Fourier 
analysis, in a sum of harmonic components. 
In order to obtain the maximum efficiency, the power 
must be transferred by harmonics as well. Thus, the 
current must contain the same harmonics as the 
voltage. In other words, the current must have the 
same shape as the voltage.  
The conductance Ge specified by (12) is valid 
irrespective of the supply voltage shape. 
Thus, the active current vector can be expressed as: 

 ∑
∈
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4. CASE STUDIES 

Two case studies were created for a three-phase 
sinusoidal and then nonsinusoidal voltage system, with 
different symmetrical loads (linear and non-linear), in 
which the current had been calculated with Akagi’s 
expressions, the second interpretation of the p-q theory 
and Czarnecki’s definitions.  
These case studies will emphasize that Akagi’s 
interpretation of the p-q theory, related to the active 
current, leads to correct results only if the load is 
symmetrical and linear.  
The active component defined by the second 
interpretation of the p-q theory represents the active 
component of load current only if the voltage is 
sinusoidal.  
The only definition for the active current which keeps 
its validity, in the both cases related to voltage 
conditions and load type, is the definition given by 
Czarnecki in the CPC theory.  
All the waveforms that will be presented for these case 
studies have been obtained in Matlab/Simulink 
environment. 

4.1. Sinusoidal voltage, symmetrical nonlinear load  

The symmetrical nonlinear load consists of a three 
phase thyristor bridge rectifier with a passive RL 
load. The sinusoidal grid voltage and distorted load 
current are shown in Fig. 2.  
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Figure 2: The grid voltage and current waveforms for 
the three-phase bridge rectifier 

As it can be seen, the active current defined by Akagi 
is nonsinusoidal and its fundamental component has 
the same phase as the voltage (Fig.3). 
On the other hand, the active current defined by the 
second interpretation of the p-q theory (Fig. 4) is 
sinusoidal with the same phase as the voltage [6]. 
Therefore, besides the actual active component, the 
current proposed by Akagi contains a distorted current 
component. 
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Figure 3: The grid voltage and the Akagi’s active 
current waveforms 
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Figure 4: The grid voltage and the active current 
waveforms for the 2nd  interpretation of p-q 

As expected, the CPC’s active current is a sinusoidal 
one, with the same phase as the grid voltage (Fig. 5). 
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Figure 5: The grid voltage and the Czarnecki’s active 
current waveforms 
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It can be seen in Fig. 6 and 7 that the locus of the 
active current space vector follows the locus of the 
voltage space vector only in case of the second 
interpretation of the p-q theory. 
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Figure 6: The locus of the voltage space vector and of 
Akagi’s active current space vector 
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Figure 7: The locus of voltage space vector and of the 
active current space vector for the second 

interpretation of the p-q theory 

This case study shows that the “active” name is not 
suitable for the currents defined by Akagi, because, 
under sinusoidal voltage conditions, the active power 
is transmitted only on the fundamental component of 
the distorted current. This does not happen in the case 
of active current defined by the second interpretation 
of the p-q theory nor in the case of CPC’s active 
current. 

4.2. Nonsinusoidal voltage, symmetrical resistive 
load 

Let us consider a symmetrical resistive load supplied 
by a nonsinusoidal voltage system.  
This voltage system was obtained by reconstructing 
the shape of an actual measured voltage, based on its 
harmonics spectrum. 

Obviously, the load current and grid voltage have 
identical shapes and phase (Fig. 8). 

0.06 0.065 0.07 0.075 0.08

-40

-20

0

20

40

 u
a/7

[V
],

 i La
[A

]

Time [s]  

Figure 8: The grid voltage and current waveforms for 
the resistive load 

In this case, the Akagi’s p-q theory leads to correct 
results because the active current has the same phase 
and shape as the grid voltage (Fig. 9). 
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Figure 9: (a)The waveforms of grid voltage and 
Akagi’s active current; (b) Detail view which 

demonstrates the similarity between the voltage 
waveform and the active current waveform  

(a) 

(b)
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According to the second interpretation of the p-q 
theory, the resulted active current system has a 
different shape referring to the voltage (Fig. 10). 
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Figure 10: (a) The waveforms of grid voltage and the 
2nd interpretation of p-q active current; (b) Detail view 

which shows the difference between the voltage 
waveform and the active current waveform 

It can be noticed from Fig. 11, that the active current 
based on the CPC theory, also, preserves the supply 
voltage shape.  
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Figure 11: The grid voltage and the Czarnecki’s active 
current waveforms 

As shown in Fig. 12 through the locus of active 
current and voltage space vectors, Akagi’s 
decomposition leads to correct results only if the load 
is symmetrical and linear. 
Unfortunately, under non-sinusoidal voltage 
conditions, the active current defined by the second 
interpretation of the p-q theory does not represent the 
active component of the load current (Fig. 10 and 
Fig. 13).  
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Figure 12: The locus of voltage space vector and of 
Akagi’s active current space vector 
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Figure 13: The locus of the voltage space vector and of 
the 2nd  interpretation of p-q active current space 

vector 

5. CONCLUSIONS 

Considering the obtained results after analyzing the 
two case studies, some conclusions regarding the 
current components in a three phase system can be 
outlined. 
The active current defined by Akagi represents the 
active component of the load current only for 
symmetrical linear loads. The active current defined 
by the second interpretation of the p-q theory 
represents the active component only if the grid 
voltage is sinusoidal, no matter the character of the 

(a) 

(b) 
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load. If the grid voltage becomes nonsinusoidal, this 
interpretation, also, loses its validity. 
The active current defined by the CPC theory 
remains valid in all the imposed study cases. This 
happens because, even if the grid voltage is 
nonsinusoidal, the active current keeps the voltage 
shape for both linear and nonlinear loads. 
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