Transient Magnetic – Translating Motion Finite Element Model of the Annular Linear Induction Pump

Cristian Roman^{*}, Virgiliu Fireteanu^{*}, Sylvain Vitry[†], Frederic Rey[†]

* EPM_NM Lab, POLITEHNICA University of Bucharest, Romania † Laboratoire de Conception et d'Innovations Technologique, Comisariat a l'Energie Atomique et aux Energies Alternatives, Centre de Cadarache, France

Abstract— In the context of replacing the mechanical pumps with high flowrate Annular Linear Induction Pumps (ALIP) for the Generation IV of nuclear plants in France, the paper constitutes a study of startup, steady state operation and dynamic behavior of a double sided ALIP in bloc pumping assumption, based on finite element transient magnetic – translation motion coupling models. Using a model of pump load proportional with the square of the flowrate, the Electromagnetic Pressure – Flowrate characteristic was determined and considered further in expressing what a stable pump operating state represents. Data regarding the highest admissible jump load are given. The dependence on flowrate of pumping efficiency is presented and provides with a view regarding the maximum capabilities of such devices of converting electrical energy into motion