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Abstract - In this paper, we examine the problem of deter-
minining the electrostatic potential distribution and field 
intensity vector in the high voltage divider and around the 
power line support. The potential is defined as the solution 
of the Dirichlet problem for the Poisson equation, and the 
flow of the intensity vector is defined by integration of this 
vector along the contour located within the solution domain. 
The formulated problem is solved numerically by means of 
the finite volume method. This method representes some 
generalization of the finite difference method and allows 
discretization of differential equations on grids with arbi-
trary configuration. The idea of the method is to construct a 
basic grid, consisting of triangles, and the dual grid, consist-
ing of the Voronoi cells. The differential equations are inte-
grated over the volume of the Voronoi cell and then, using 
the divergence theorem, the volume integrals are replaced 
by surface integrals. The integrals over the cell surface are 
approximated by quadrature formulas. As a result, the  
original differential equation is replaced by a difference 
equation. This procedure is performed for all internal 
nodes, and therefore we obtain a system of linear algebraic 
equations. The technique was applied for solving two practi-
cally important problems. The fields of potential and of flow 
intensity vector have been constructed for the problem of 
determining the electrostatic field in the high-voltage      
divider. The divider capacity with the screen and without 
screen was determined. It was shown that the use of a cylin-
drical screen results in an almost twofold increase in capac-
ity. The second considered problem is related to the calcula-
tion of the electrostatic field in the vicinity of the L-shaped 
support of the power line. 

Keywords - finite volume method, electrostatic potential, field 
intensity vector, capacity, Dirichlet problem, Poisson equation 

I. INTRODUCTION 
Let consider the problem of determination of potential 

distribution ),,( zyxu  of electrostatic field in the multiply-
connected domain �  with piecewise constant 
permittivity ),,( zyxa� . Within the � , the function  

),,( zyxu  satisfies Poisson equation 

 ),,()grad(div zyxua ����   (1) 

where  ),,( zyx�  is the density of free charge distribution. 
If within �  there are no any of such charges, then the 
equation (1) turns into Laplace equation 0)grad(div �� ua . 
The values of ),,( zyxu  on the boundary ����  of the 
�  are known 

 ),,(),,( zyxzyxu ��
�

 (2) 

The electric field intensity (also called electric field) E
�

  
is defined by the formula uE grad��

�
 and the electric 

displacement field – by the formula ED a

��
�� . On the 

boundary interfaces between the heterogeneous mediums 
the continuity conditions 0][ �u  and 0)],[( �nD

��
 hold. 

Here the square brackets denote the difference between 
the limit values at the left and at the right of the boundary 
interface,   is the normal vector to this interface. 

II. DISCRETE MODEL COMPOSITION 
For numerical solving of the formulated Dirichlet's 

problem we divide the volumetric domain �	��� into 
the finite set of small volumetric tetrahedron-shaped 
elements (pyramids). The vertices of pyramids are called 
the nodes of the difference grid. It is possible to construct 
a lot of various divisions of three dimensional domain into 
pyramids in case when the nodes have fixed positions. 
The division that is known as Delaunay triangulation is 
considered the best one. Delaunay triangulation is a 
division such that no other node of the grid is inside of the 
circumsphere of any pyramid. 

Let denote by hT  the set of grid pyramids, where h is 
the maximal value of the pyramids side lengths. Let 
introduce also the dual grid *

hT  that consists of so-called 
Voronoi cells. Each Voronoi cell encloses one of the 
inside nodes of the difference grid. The example of three-
dimensional Voronoi cell for basic node number 74 is 
represented in the Fig. 1. One can observe that this basic 
node is connected with the nodes 2, 73, 75, 80, 176, 182, 
188 and 332, which are called neighboring nodes, but the 
Voronoi cell represents the polyhedron with 
semitransparent faces. Each face of the cell is orthogonal 
to the segment between the basic node and neighboring 
node and the intersection point between the face and the 
segment is situated at the midpoint of the segment. 

Let denote by 0P  the basic node and by *
0PK  – the 

Voronoi cell. The vertices of Voronoi cell *
0PK  we denote 

by Qi. These vertices Qi are the centers of the spheres 
circumscribed around the tetrahedrons having the point 

0P  as a vertex. 
As an approximate solution of the problem (1), (2) we 

consider the piecewise linear function that must be 
continuous in �  and linear on every tetrahedron hTK 
 . 
The function ),,( zyxuh  on the set of tetrahedron hT  can 
be defined in the following manner. 
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Fig. 1. Voronoi cell for basic node number 74. 

 

Let the tetrahedron 4321 PPPPK �  be some element of 
the set hT  and ),,( zyxP  be an arbitrary point of this 
element. In this tetrahedron for each vertex we introduce 
the shape functions 4,1),,,( �izyxiN . These functions 
should verify the following conditions: the functions are 
linear and their values at the tetrahedron vertices are equal 

to 0 or 1, i.e. 
�
�


�
�

�
ki
ki

PN ki ,0
,1

)( . The shape functions can 

be represented in the explicit form through the coordinates 
of the vertices: 

 iiiii wzwywxwzyxN ,4,3,2,1),,( 			� ��  (3) 

Here iw ,1 , iw ,2 , iw ,3  and iw ,4  are the components of the 

vectors iw , 4,1�i . To determine the vectors iw  it is 

necessary to solve 4 systems of equations ii fwA � , 
4,1�i . The elements of the matrix A are formed from the 

coordinates of the vertices 4,1),,,( �� izyxPP iiiii  of 
tetrahedron as follows 

��
�
�
�

�

�

��
�
�
�

�

�

�

1
1
1
1

444

333

222

111

zyx
zyx
zyx
zyx

A ��;
�
�


�
�

��
ki
ki

ffffff ikiiiii ,0
,1

),,,,( ,,4,3,2,1 � 

Using the shape functions for every grid node (internal 
or boundary) we introduce the basis function ),,( zyxi� ,  
i = 1, 2, …, n, n + 1, …, n1 (n and n1 represent here the 
number of internal nodes and the total number of nodes 
correspondingly). The function ),,( zyxi�  is piecewise 
linear, i.e. it is continuous and linear on each tetrahedron 
with unit value in the node iP  and with zero values in all 
other nodes. Then the approximate solution ),,( zyxuh  
can be represented as a linear combination of basis 
functions  

 �
�

��
1

1
),,(),,(

n

i
iih zyxuzyxu � (4) 

It is easy to verify that the coefficients ui from (4) are 
equal to the unknown potential values at the node 

),,( iiii zyxP , i.e. iiiih uzyxu �),,( . 
It should be noted that the solution of the problem (1), 

(2) by finite element method requires the application of 
Galerkin method. This method consists in following. Let 
substitute the (4) in the equation (1) and then write down 
the condition of orthogonality of obtained expression with 
respect to basis functions ),,( zyxk�  for internal nodes: 

 nkdVdVu kkha ,1,)grad(div ������� ��
��

 (5)� 

 k

n

i
ikik

n

i
iia udVu ������� �� �

�� �

~)grad(div
11

11
 (6)� 

 �
�

����� dVkk
~  

 dVdV kiakiaki ���������� ��
��

gradgrad)grad(div � 

As the solution values are known at the boundary 
nodes, then the system (6) takes the form 

 k

n

i
ikiu ����

�1
�� nk

n

ni
ikikk ,1,~ 1

1
������� �

	�

� (7) 

In contrast to finite element method, the generalized 
Galerkin method is used in finite volume method. This 
generalized approach consists in following. In the 
condition of orthogonality (5) we use basis functions 

),,( zyxk�  of the space )()( 2
0

2 ��� LW  as follows       
[1, 2]. Let introduce new basis functions ),,( zyxk�  for 
dual grid *

hT  by the following rule: function ),,( zyxk�  
possesses the constant unit values in the Voronoi cell for 
internal node kP  and it possesses zero values in the rest of 
domain. Then the condition of orthogonality (5) with 
functions ),,( zyxk�  gets the form  

 nkdVdVu kkha ,1,)grad(div ������� ��
��

� (8)� 

Taking into consideration that the function ),,( zyxk�  is 
nonzero only in *

kPK , we obtain  

 �� ����
**

)grad(div
kPkP KK

ha dVdVu  (9)� 

where *
kPK  is Voronoi cell for node kP . 

Thus, to obtain the system of linear algebraic equations 
with respect to unknown values of the function hu  at the 
grid nodes by means of finite volume method we should 
proceed as follows. Let consider the Poisson equation 

),,()grad(div zyxua ����  in three-dimensional space 
with Cartesian coordinates Oxyz. Let integrate this 
equation over the volume of the cell *

kPK . 

Then we obtain the formula coinciding with (9) 
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 �� ����
**

),,()grad(div
kPkP KK

a dVzyxdVu  �(10)

Now we apply the divergence theorem to the left-hand 
member of the (10) and obtain 

���
�� �

�
�����

***

),grad()grad(div
kPkPkP K

a
K

a
K

a dS
n
udSnudVu (11) 

where *
kPK�  is the total surface of the polyhedron *

kPK ; n  

is the external normal to the surface *
kPK� , and nu �� /  is 

the derivative of function u by this normal. In this case the 
equation (10) takes the form  

 �� ���
�
�

�
� **

),,(
kPkP KK

a dVzyxdS
n
u � (12)

Thus, the solution of the problem (1), (2) by finite volume 
method reduces to the approximation of the relation (12) 
for Voronoi cells for internal nodes of the difference grid. 
The analogous procedure is proper to the finite difference 
method for grids with parallelepiped-shaped cells. 
Therefore, the finite volume method can be considered as 
some generalization of the finite difference method for 
block discretization with arbitrary shaped cells. By this 
reason the finite volume method keeps all advantages of 
the finite difference method. In comparison with finite 
element method the algorithm of finite-difference 
approximations here is not so sophisticated and we do not 
need to construct local and global stiffness matrices when 
forming the resolving system of equations of type (7). 

Let’s denote in the Voronoi cell *
0PK  by 8,0, �iPi  the 

grid nodes; by 8,1, �iSi  – the areas of the faces that are 

orthogonal with the segments iPP0 ; by 8,1, �iMi  – the 

intersection points of the segment iPP0  and the face iS . 
Then the integral from the formula (12) over the surface 

*
0PK�  we can approximate as follows: 

����
���

�
��

�
�

��
�
�

�
8

1 0

0
8

1

)()()(
*
0

i
i

i

i
ia

i S
a

K
a S

PP
PuPuMdS

n
udS

n
u

iP

� 

where iPP0  is the length of the segment iPP0 . 

The integral from the right-hand member of (12) we 
approximate by formula 

 00 )(),(
*
0

VPdVyx
PK

����  

where V0 is the volume of the Voronoi cell *
0PK . Then the 

approximation of the equation (12) can be represented in 
the following form  

 00

8

1 0

0 )()()()( VPS
PP

PuPuM
i

i
i

i
ia ���

�
��

�

� 

So the final equation for the grid node 0P  takes the 
following form  

 00

8

1
00 )()()( VPPuPu

i
ii ����	� �

�

 (13) 

 �
�

��������
8

1
0

0

;8,1,)(
i

i
i

i
iai i

PP
SM � 

Now we can write out the equation in the form of (13) 
for each internal grid node and we use the condition (2) 
for the boundary nodes. As a result, we obtain the system 
of linear algebraic equations with symmetrical matrix. It is 
to mention that when solving the practically important 
problems the number of equations in such systems 
amounts to thousands or dozens of thousands. However, 
since each equation of the type (13) contains only some 
nonzero elements (usually there are from 9 to 25 non-
zeros) then it turns out that the final matrix is sufficiently 
sparse matrix. In proposed algorithm only nonzero 
elements of the matrix are stored in computer memory. To 
solve the system we apply iterative conjugate gradient 
method that rapidly converges for problems of this type. 

The obtained solution ),,( zyxuh  for field potential 
distribution in �  permits to construct the flux of electric 
field intensity vector uEEEE zyx grad),,( ���

�
. Let 

denote by V the flux of vector E
�

 passing through the unit 
area element that is orthogonal with vector E

�
. Then the 

level curves const),,( �zyxu  and const),,( �zyxV  
generate mutually orthogonal families. The function 

),,( zyxV  can be obtained by calculation of the following 
contour integral  

 � �� 		�
),,(

),,( 000

),(
zyx

zyx
zyx dzEdyEdxEyxV  (14) 

where 000 ,, zyx  are the coordinates of an arbitrary fixed 
point from � and the patch of integration is situated inside 
of domain �. In case of multiply-connected domain the 
patch of integration also can not intersect the cuts of the 
domain that bring it to simply connected structure.  

The capacitance C between two conducting bodies can 
be computed from the formula 

 
21 uu

qC
�

�  (15) 

where )( 21 uu �  is potential difference of these bodies. 
The charge q of the body located inside of the some three-
dimensional domain V can be computed in accordance 
with Gauss' law of flux as a surface integral of the field 
strength vector E

�
 over surface VS ��   

 

 ��� �
�

����������
SSS

dS
n
udSnuSdEq )(grad

���
 (16) 
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Fig. 2. General view of the high-voltage resistor with cylindrical screen.  

 
Here by S we denoted an arbitrary surface containing 

the charged body, by n
�

 – the exterior normal vector to the 
surface S and by �  – the permittivity.  

III. PRACTICAL IMPLEMENTATION 
The elaborated numerical algorithm is realized in the 

form of program system in Matlab development frame-
work. The developed software has been used to solve two 
practical problems. 

In engineering practice, it is often necessary to 
determine very precisely the capacitance of multiply 
connected piecewise homogeneous bodies, where the 
potential is known at the opened contours. The 
determination of the electrostatic fields and capacities of 
the high-voltage resistors (potential dividers), 
implemented on the base of microwire and protected by 
the conical or cylindrical screens (fig. 2), belongs to such 
problems with degenerated boundary conditions. Such a 
problem does not represent the classical Dirichlet's 
problem for simply connected or multiply connected 
domain since the boundary conditions are specified not 
only at the exterior boundary, but at the two broken lines 
within the domain of solution existence as well. 

Since the considered problem possesses the axial 
symmetry property, then the domain of the solution is a 
two-dimensional rectangle in cylindrical coordinates r and 
z. 

The Fig. 3 and Fig. 4 represent the potential and field 
strength level curves for typical constructions of the 
resistive divider with screen and without it. The resistor 
represents the hollow glass cylinder with the height        
H1 = 120 mm, the external diameter D1 = 28 mm and the 
internal diameter D2 = 18 mm. The screen is of cylindrical 
form with the height H = 220 mm and the diameter          
D = 75 mm. The relative dielectric constant for glass is    
e1 = 6, and it is e2 = 1 for the air filling the internal and 
external frame hollows. The potential is given at the inner 
boundaries and it is linearly decreasing from 10 
dimensionless units to zero. 

 
 

 

 
 

Fig. 3. Capacity of divider without screen C = 22.05 pF on the grid with 
19675 nodes. 

 
Fig. 4. Capacity of divider with cylindrical screen C = 40.99 pF on the 

grid with 66164 nodes. 

 
Fig. 5. L-shaped support with a hanging wire on a cylindrical glass 

isolator. 
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Fig. 6. Equipotential lines (full lines) and intensity vector (arrows) at the different cross-sections                                                                        

(y = 43,15; 17,43; 5,81; 2,05; 1,5 and 0,5 m). 

 
The comparative analysis of the presented results shows 

that the presence of the screen with indicated dimensions 
approximately duplicates the electrical capacity of the 
divider. 

The second considered problem is related to the 
calculation of the potential and the electrostatic field in the 
vicinity of the L-shaped support of the power transmission 
line with a voltage of 100 kV (Fig. 5). 

Solution of this problem is presented in the Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 

The figure shows the level curves of the potential and 
the intensity vector at the cross-sections by the vertical 
planes y = 43,15; 17,43; 5,81; 2,05; 1,5 and 0,5 m. 
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