
Implementation and Adjustment of CPML for 
CE-FDTD Algorithm

Bojana Nikolic, Bojan Dimitrijevic, Slavoljub Aleksic, Nebojsa Raicevic, Zorica Nikolic 

University of Nis, Faculty of Electronic Engineering, Nis, Serbia, bojana.nikolic@elfak.ni.ac.rs, 
 bojan.dimitrijevic@elfak.ni.ac.rs, slavoljub.aleksic@elfak.ni.ac.rs, nebojsa.raicevic@elfak.ni.ac.rs, 

 zorica.nikolic@elfak.ni.ac.rs  

Abstract— A complex-envelope finite difference time do-
main (CE-FDTD) algorithm has been proposed in the litera-
ture as one of FDTD formulations that is very general. 
However, this method, didn’t receive a lot of scientific atten-
tion, since the introduced complexity wasn’t quite justified 
by the obtained gain in maximum time step size. Neverthe-
less, there is still a strong motivation to study this formula-
tion, since it can potentially be, in combination with high 
order accuracy FDTD approaches, a significant tool to com-
bat the accuracy deterioration due to numerical dispersion. 
A method of choice for termination of CE-FDTD computa-
tional domain was the convolutional perfectly matched layer 
(CPML), since it is considered to be superior over other 
commonly used techniques. Yet, the application of CPML in 
CE-FDTD environment isn’t straightforward. In this paper 
a modification of conventional CPML is performed in order 
to be used for termination of CE-FDTD computational do-
main. The modified CPML, along with CE-FDTD algorithm 
has been implemented in an own developed simulation envi-
ronment and tested through various simulation cases. The 
functionality of the proposed CPML is illustrated on the 
example of a dipole antenna. The observed behavior of the 
boundary region fully corresponds to the propagation 
through the free space, without any undesirable reflections.  

I. INTRODUCTION

The finite difference time domain (FDTD) method is a 
full wave time domain differential equation based tech-
nique that received huge attention in the literature re-
cently. It is a versatile method that was proposed by Yee 
[1] for two dimensional problems with metal boundaries. 
Nowadays the FDTD method is one of the most popular 
methods for simulation and analysis of electromagnetic 
problems, ranging from antennas, microwave wave cir-
cuits, electromagnetic scattering to bioelectromagnetics 
and nanophotonics [2], [3]. However, the conventional 
FDTD formulation shows low computational efficiency 
when applied to the bandpass-limited (narrow band) sig-
nals that are very common in communication systems. 
Namely, in order to keep the numerical dispersion low, a 
time step has to be small (with the respect to the highest 
frequency in the signal), although useful envelope infor-
mation occupies only a small bandwidth around the high 
carrier frequency [4].

In order to overcome this problem, a complex-envelope 
FDTD (CE-FDTD) scheme has been proposed [5]. Using 
this method, the signal can be sampled in accordance with 
the bandwidth of the signal rather than its maximum fre-
quency, which yields the time step significantly increased 
in comparison with the conventional FDTD. A compre-

hensive stability and numerical dispersion analysis of CE-
FDTD can be found in [4]. It is, though, shown that the 
gain in maximum allowed time step isn’t enough to make 
the CE-FDTD formulation favourable in terms of compu-
tation efficiency when comparing to the conventional 
FDTD. In particular, maximal time step allowed for sta-
bile and practically usable CE-FDTD results is very much 
dependant on the relative sizes of carrier wavelength and 
spatial steps [4]. However, it is still important to study this 
formulation, since it can potentially be, in combination 
with high order accuracy FDTD approaches, a significant 
tool to combat the accuracy deterioration due to numerical 
dispersion.   

The perfectly matched layer (PML) absorbing medium 
[6] is considered to be the most robust and efficient tech-
nique for the termination of FDTD computational domain 
[7]. One particular PML implementation, referred to as the 
convolutional PML (CPML) seems to outperform the oth-
er implementations of the PML, offering a number of ad-
vantages [8]. CPML is based on the stretched coordinate 
form [9] and the use of complex frequency shift (CFS) of 
PML parameters [10]. It is shown that the CFS-PML is 
highly absorptive of evanescent modes and can provide 
significant memory savings when computing the wave 
interaction of elongated structures, sharp corners, or low 
frequency excitations [8]. However, it can’t be directly 
applied to the CE-FDTD algorithm.  

In this paper a modification of conventional CPML is 
performed in order to support termination of CE-FDTD 
computational domain. The modified CPML, along with 
CE-FDTD algorithm has been implemented in an own 
developed simulation environment and tested through 
various simulation cases. The functionality of the pro-
posed CPML is illustrated on the example of a dipole an-
tenna. 

II. CE-FDTD FORMULATION

A detailed description of CE-FDTD algorithm can be 
found in [4], [5]. A narrow band signal can be presented 
as

� � � �� �tcj
pp eEHEH �

���� � ˆ,ˆRe, , zyx ,,�� , (1) 

where c�  is the carrier frequency, 1	�j  is imagi-
nary unit and operator ��
Re  returns the real part of a 
complex number.  and  denote associated com-
plex-envelope representations 

�Ĥ �Ê
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� � � ������� �� qqpp EHjEHEH ˆ,ˆˆ,ˆ)ˆ,ˆ( , zyx ,,��  (2) 

Magnitudes � ��� pp EH ˆ,ˆ  and � ��� qq EH ˆ,ˆ  are in-phase 

and quadrature parts of � ��� EH ˆ,ˆ .
Using (1), CE Maxwell’s equations can be obtained as 
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where it is cexex j���̂  and cmxmx j���̂ .
Electric and magnetic conductivity are denoted as ex
and , respectively. It should be mentioned that the 
magnetic conductivity  is, strictly speaking, not 
physically realistic, but is often used to describe magnetic 
losses [11] and it will be included in this analysis. This 
term was labeled as  in order to maintain similar 
notation in Faraday’s and Ampere’s law. For the brevity 
only equations for  and  field components are pre-
sented.

mx

mx

mx

xÊ xĤ

Applying the same techniques for spatial and temporal 
discretization as in conventional FDTD formulation (sec-
ond-order accurate two-point central difference technique 
and time-average time approximation), one can obtain 
CE-FDTD update equations. For  and  field com-
ponents, it is 
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where  is the time step, ,  and t� x� y� z�  are spatial 
steps along x, y and z axis, respectively.  

Update coefficients , ,  and 
(

Eva , Evb , Hva , Hvb ,
zyxv ,,� ) are given in Table I.  

Since the main intention in application of the presented 
CE-FDTD algorithm is to maintain very small size of the 

spatial discretization steps, the numerical stability crite-
rion in that case can be described by the relation [4] 

� � � � � � � � .2111/1 2222

max

�
�
�

�
�
� �	������

����

czyxc

tt

c
 (9) 

It can be noticed that criterion (9) limits the size of a 
time step less severely than Courant-Frederick-Levy 
(CFL) condition (which characterizes the stability of con-
ventional FDTD algorithm). For this reason, CFL can be 
also used in the case of CE-FDTD algorithm.  

TABLE I.
UPDATE COEFFICIENTS CE-FDTD [12] 

Update Coefficients 

Hva ,
� �
� ���
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III. CPML ALGORITHM 

The CPML implementation, based on the conventional 
FDTD formulation, along with undertaken code optimiza-
tions, is described in detail in [13]. In this paper, in order 
to terminate a CE-FDTD computational domain, a modifi-
cation of CPML algorithm will be introduced. In that case 
update equations for  and  field components have 
the form  
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where it is 
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Parameters ,  and  inside the CPML are graded  ik i i�

� � ,1 max��� �m
ii D	�  (16) 

� � � ,11 max 	�� kDk m
ii � �  (17) 

� � ,,,,max zyxiD m
ii ���  (18) 

where max�  is the value on the air–PML interface and 
 and maxk max  at the outer boundary. Current position 

in CPML is denoted by  and  and  are CPML 
parameters. The width of the PML is denoted by D.

i� �m m

A detailed procedure of derivation for update equations 
(10)-(13) are given in Appendix. 

In (10) and (11) it can be noticed that first three sum 
members are equivalent to the update equations for x com-
ponents of magnetic and electric field in free space ((5) and 
(6)), respectively. The E and H field components are thus 
first updated in the particular elementary cell using stan-
dard FDTD updates, regardless of whether it belongs to the 
computational domain or CPML region. The cell is next 
tested if it is in CPML region. If yes, the rest parts of (10) 
and (11) are simply added in within the corresponding 
PML regions. Since �  field elements are needed in 

auxiliary loops  and 

�uu EH ,
n
Eu�� 21�

��n
Hu  ( ) and 

only 

� zyxvu ,,, � �
� �uu EH ˆ,ˆ  are available, complex field components 

are shifted into the band of high frequencies multiplying 
by � � tncje ��� 21  and , respectively. In this way, 
modified CPML boundary will function like the one that 
terminates two independent real computational domains.  

tncje ��

IV. SIMULATION RESULTS AND DISCUSSION

The CE-FDTD algorithm with the modified CPML has 
been implemented as one of the operating modes available 
in actual realized FDTD simulation environment. Its per-
formance is verified in various simulation cases. For the 
purpose of illustration, an example of a dipole antenna is 
presented here. Differential Gaussian pulse is used as an 
excitation signal. The number of used CPML layers is 8.  

In Figs. 1-6 one can follow the propagation of Ey field 
component in zx plot plane in time moments 44 t� , 80 t� ,
156 , 240 , 283  and 606 , respectively. Only 
computational domain is presented, CPML layers are ex-
cluded from the view. It can be clearly noticed that that 

the wave is properly formed and propagating without re-
flections from the side edges of computational domain.  

t� t� t� t�

In time moments presented in Figs.4-5 the propagating 
wave has come to the end of computational domain. There 
are no undesirable reflections. In Fig. 6 the propagating 
wave is totally absorbed by CPML, which simulates the 
propagation through the free space. Still, there are no un- 

Fig. 1. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 44

Fig. 2. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 80

Fig. 3. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 156
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Fig. 4. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 240

Fig. 5. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 283

Fig. 6. Propagation of Ey field component in zx plot plane without 
CPML presented for .tt �� 606

desirable reflections. This clearly demonstrates the proper 
functioning of the modified CPML.  

In Fig. 7 the propagation of Ey field component in zx
plot plane is presented in the same time moment as in Fig. 
2, but with shown CPML layers. One can observe how the 
propagating wave at the boundary penetrates into the 
CPML region. In this region the wave is gradually attenu-
ated and it practically disappears in the vicinity of perfect 
electric conductor (PEC) wall on the outer side of CPML.  

Fig. 7. Propagation of Ey field component in zx plot plane with 
CPML presented for .tt �� 80

V. CONCLUSION

In this paper a modification of conventional CPML is 
performed in order to support termination of CE-FDTD 
computational domain. The modified CPML, along with 
CE-FDTD algorithm has been implemented in an own 
developed simulation environment.  

The functionality of the proposed CPML is tested on 
various simulation cases and illustrated here on the exam-
ple of dipole antenna. At the end of computational do-
main, the propagating wave is totally absorbed by CPML. 
This behavior fully corresponds to the propagation 
through the free space. There are no undesirable reflec-
tions, which clearly demonstrates the proper functioning 
of the modified CPML. 

Here proposed modification of CPML is basically an 
extension of the conventional CPML to the complex for-
mulation. For this reason, its properties and performance 
are equivalent to the ones of the conventional formulation, 
which are extensively studied and proven in the literature.  

APPENDIX

The procedure of derivation for update equations (10)-
(13) is presented in this section. 

A narrow band signal at the carrier frequency can be 
thought of as  

� � � �� ����� � EHEH pp ,Re, , zyx ,,��  (A1) 

where  and  denote associated complex represen-
tations.

�H �E

In the conventional CPML, a stretched coordinate form 
is introduced as  
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where ,ik i  and i�  are CPML parameters. When ap-
plied to the x component of the electric field in Ampere’s 
law in time domain, for example, it is [14] 
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where )(tsi  is the inverse Laplace transform of the in-

verse of the stretching parameter . The impulse 
response of 

1)( 	�is
)(tsi  has the form [8] 
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where  and  are the impulse and step functions, 
respectively. After applying (A4), (A3) becomes 
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Using standard FDTD formulation, (A5) can be discre-
tized as 
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where ,� �mZ �0 zy,��  is discrete impulse response of 
� �t� . It can be represented as  
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Since  has a simple exponential form, it is pos-
sible to perform the convolutions in (A6) through an aux-
iliary term in recursive form . Now, (A6) becomes 
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where �!  terms are  
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with constant  given as �b
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However, in CE-FDTD formulation, instead of real 
field components � ��� pp EH , , their complex-envelope 

representations � ��� EH ˆ,ˆ  are available. In that case update 
equation (A9) becomes 
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It is possible to apply (A10) and (A11) in (A14) and 
(A15), respectively, only if the relation that follows from 
(1) and (A1) is used 
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After few very straightforward algebraic manipulations 
the final update equation for x component of electric field 
in CPML region in CE-FDTD formulation has the form 
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Following the similar procedure, one can obtain update 
equation for the other five field components in CPML 
region in CE-FDTD formulation. The form of update equ-
ation (11) is somewhat different from (A17) since the un-
dertaken code optimization, described in [13], is included 
in (11).  
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