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Abstract—The blend of geometry and numerical analysis 
that is taking place in the present material produces a sub-
ject with can gives a lots of detail and richness for the case 
of dynamical models arising in mathematics, science and 
engineering. The goal of this paper is the geometrical and 
numerical study of the main sizes of the mathematical mod-
els of the multispecies interactions which are important in 
determining long-time dynamics, based on the application of 
various notions from the theory of  dynamical systems to the 
numerical approximation of initial value problems over 
long-time intervals.  The numerical methods are widely used 
for the study of complicated temporal behavior of dynami-
cal systems, in order to approximate different types of in-
variants sets or invariant manifolds and also to extract sta-
tistical information on the dynamical behavior in the com-
putation of natural invariant measures or almost invariants 
sets. The present study is a interplay between dynamical 
systems geometrical theory and computational calculus of 
dynamical systems, knowing that the theory provides a 
framework for interpreting numerical observations and 
foundations for efficient numerical algorithms. We perform 
a computational study for the case of four important exam-
ples: prey-predator 2D Lotka-Volterra system, Bailey 
model for the evolution of epidemics, classical Ker-
mack-McKendrick model of evolution of epidemics 
and the  prey-predator 3D Lotka-Volterra system. 

I. INTRODUCTION

In many branches of physics, engineering and applied 
mathematics we find systems described by coupled ordi-
nary differential equations. The interest in chaotic sys-
tems bursted with one decade delay after the publication 
of Lorenz's 1962 seminal paper. Rather similarly, only 
after 2 years after construction of Chua's 3rd order non-
linear electrical circuit in 1982, it was observed by Ma-
tsumoto that the Chua's circuit exhibits(for some pa-
rametrization and wild nonlinearity) may be chaotic be-
haviour, and only in 1986 it was proved by Chua-
Komuro-Matsumoto that the behavior (even for a slight 
nonlinearity) is really chaotic [15]. Belonging to this type 
of systems, dynamical systems are concerned primarily 
with making qualitative study about the behaviour of sys-
tems which evolve in time given knowledge about the 
initial state of the system itself. 

This paper  is devoted to studying conservation laws 
for Volterra-Lotka type systems and others systems aris-
ing from biology and relationship between this in the 
geometric framework of Classical Mechanics. The Lotka-
Volterra model indeed may be the simplest possible pred-
ator-prey model. Nevertheless, it is a useful tool contain-
ing the basic properties of the real predator-prey systems, 

and serves as a robust basis from which it is possible to 
develop more sophisticated models. The Lotka-Volterra 
model is very important in population modeling. The 
analysis of the system may be used, in particular, to de-
scribe the dynamics in models from ecology, molecular 
biology, ecosystems, and chemical systems (for example 
a model for oxygen depletion in a system of sewage 
could be developed), and also in the detection of failures 
in civil structures. 

The viewpoint is geometric and we also compute and 
characterize objects of dynamical significance, in order to 
understanding the mathematical properties observed in 
numerical computation for dynamical systems. 

We will present four very important examples. First 
three examples represent so called variational dynamical 
systems, that is dynamical systems described by a system 
of ordinary differential equations which can be written as 
the Euler-Lagrange equations associated to Lagrangian L,  

0�
�
�

	��
�

�
��
�

�
�
�

ii x
L

y
L

dt
d

                                              (1) 

These examples are: prey-predator 2D Lotka-Volterra 
system ([9], [13], [18], [19]), Bailey model for the evolu-
tion of epidemics ([2], [7], [13]), classical Kermack-
McKendrick model of evolution of epidemics ([7], [13]).  
This dynamical systems are included in the presymplectic 
case because the 2-form L� associated to the correspond-
ing Lagrangian is degenerate. Finally, we present differ-
ent versions of the well-known prey-predator 3D Lotka-
Volterra system. This system is not a variational dynami-
cal system. However, we can give more Hamilton-
Poisson realizations of this bi-Hamiltonian system  like in 
the 2D case. 

II. THE PREY-PREDATOR 2D LOTKA-VOLTERRA SYSTEM

Let us consider the system of ordinary differential equa-
tions ([11]): 
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This system is called Lotka-Volterra system and repre-
sents a complex biological system model, in which two 
species x  and  live in a limited area, so that individuals 
of the species 

y
y  (predator) feed only individuals of spe-

cies x  (prey) and they feed only resources of the area in 
which they live. Proportionality factors  and  are re-
spectively increasing and decreasing prey and predator 
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populations. If we assume that the two populations come 
into interaction, then the factor b is decreasing prey popu-
lation x  caused by this predator population y  and the 
factor  is population growth due to this population d x .
The evolution system (2) can be written in the form of 
Euler-Lagrange equations (1) , where the Lagrangian L is 
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Let us remark that the total energy   is a con-
servation law for prey-predator system (2) and the La-
grangian 

HEL �

L is singular.  
If we consider the Cartan forms associated to L ,
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constant rank, equal with 2, and so, we will obtain a pre-
symplectic system � �LL dETR ,,2 � .

According to [12] and  [14]  the Lotka-Volterra equa-
tions (2) has the following Hamilton-Poisson realization

HJxi A�� , where bydxyaxcH 		�� lnln  is 

the Hamiltonian and  is the Poisson 

bracket.  
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III. THE BAILEY MODEL FOR THE EVOLUTION OF
EPIDEMICS

In Bailey model for the evolution of epidemics are 
considered two classes of hosts: individuals suspected of  
being infected, whose number is denoted by x  and indi-
viduals infected carriers, whose number we denote by .     
Assume that the latency and average removal rate is zero 
and then remain carriers infected individuals during the 
entire epidemic, with no death, healing and immunity. 

y

It is proposed that, in unit time, increasing the number of 
individuals suspected of being infected to be proportional 
to the product of the number of those infected them.  

These considerations lead us to the evolutionary dy-
namical system  given by ([13]): 
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The model is suitable for diseases known animal and 
plant populations and also corresponds quite well the 
characteristics of small populations spread runny noses, 
dark, people such as students of a class  team 

First of all, let us remark that we have a conservation 
law, nyx �� . That means that n ,  the total number of  
individuals of a population, does not change during the 
evolution of this epidemic.  The equations (3) can be  
written as Euler-Lagrange equations, where the  Lagran-
gian L is
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This particular case of  Lotka-Volterra system  (2) has  
a  Hamilton-Poisson realization  with the Hamiltonian 

)( yxkH �	�  and the Poisson structure defined by 
 from above.  J

IV. THE CLASSICAL KERMACK-MCKENDRICK
MODEL OF EVOLUTION OF EPIDEMICS 

The classical model of evolution of epidemics was for-
mulated by Kermack (1927) and McKendrick (1932) as 
follows. Let us denote the numerical size of the popula-
tion with n and let us divide it into three classes: the 
number of individuals suspected of x , the number of 
individuals infected carriers , and the number of isolate 
infected individuals .

y
z

For simplicity, we take zero latency period, that all in-
dividuals are simultaneously infected carriers that infect  
those suspected of being infected. Considering the previ-
ous example we note the rate constant of disease 
transmission. Changing the size of infected carriers de-
pends on the rate  and also depend on , the rate that  
carriers are isolated. In this way, we have the system 
([11]): 
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Let us note that nzyx ��� ,  i.e. the number of 
individuals of the population does not change.  This 
conservation law  tells us not cause deaths epidemic.

The evolution of  a dynamic epidemic begins with a 
large population which is  composed of a majority of 
individuals suspected of being infected and in a small 
number of infected individuals. Initial number of isolated 
infected people is considered to be zero.  

So, we can consider the subsystem  ([13]) 
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The Lagrangian and Hamiltonian of the system (5) are 
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and so,  we have a new conservation  law of  (5) 

xkyxkEH L ln)( 21 ��	�� .
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If we get back to the Kermack-McKendrick model (4), 
then we have that the Lagrangian whose Euler-Lagrange  

equations  are  really (4) is � �2
12

1 ykzLL 	�� � ,

 where is the Lagrangian of the subsystem (5). 
The corresponding Hamiltonian is given by  

.
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 Let us observe that the associated Lagrangian L is
singular and L�  has a constant rank, equal with 1, and
so, we will obtain a presymplectic system 
� �LL dETR ,,3 � . HEL �  is the energy of L and

LE is a conservation law for  (4). 

V. THE 3D LOTKA-VOLTERRA SYSTEM
In [5] was discussed the next three-dimensional Lotka-

Volterra system which models the evolution of competi-
tion between three species:  

                                   (6) 
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the 3D Lotka-Volterra  system (6) admit two conserva-
tion laws andzybxabH lnlnln1 �	�

zyazyabxH lnln2 �� 	�	�� ,  because  (6)  
is a particular  case of a bi-Hamiltonian system.  The dy-
namics of  (6)  has two distinct Hamilton-Poisson realiza-
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From   and we have that 
,  are Casimir functions of , ,  ([12]). 
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VI. NUMERICAL STUDY 
Between dynamical systems theory and computation 

analysis of dynamical systems there is a strong interplay. 
Numerical integration is a important, actual and active 
subject due to the today high computer efficiency (speed 
and memory), being analysed by extensive theory and a 
vast range of software, platforms or libraries, [1], [3], 
[10]. Taking into account that even for the simplest 2D 
Lotka-Volterra system, the analytical solution is useless: 

root of a polynomial with an integral plus the special 
function Lambert, we must resort to numerical methods 
in order to have information about the trajectories. Thus, 
constructing a Matlab-based numerical code, we ap-
proximate and characterize different types of invariants 
and also extract informations on the dynamical behavior 
and perform comparisons for both different initial condi-
tions associated to the considered problem and for differ-
ent values of the parameters. In the first stage we focus on 
the numerical solving of the initial value problems by 
appropriate numerical methods, such as Runge-Kutta 
methods (for the 2D case we use a fourth order Runge-
Kutta method, [4], and for the 3D case we used a fifth 
order Runge-Kutta method, [20]).  We obtain the numeri-
cal solution represented by the approximate values of  the 
solution function for a discrete set of data points.  Using 
this approach we perform a numerical analysis of the 
conservation laws and main sizes. 

A. 2D  Lotka-Volterra  System 
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Fig. 1.  Profile of  the numerical solution  (x(t), y(t)), for  a = b = c = d = 
1 and initial conditions  (x0 = 0.5, y0 = 0.5) and  (x0 = 0.95, y0 = 0.95)  
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Fig. 2. Profile of the numerical solution  (x(t), y(t)), for  a = 0.5, b = c = 
d = 1 and initial conditions (x0 = 0.5, y0 = 0.5),   (x0 = 0.95, y0 = 0.95)  
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Fig. 3. Phase space portrait for a = 0.5, b =c = d = 1 and initial condi-
tions (x0 =0.35, y0 = 0.35), (x0 = 0.5, y0 = 0.5), (x0 =0.95, y0 = 0.95) 

listed in order from outermost trajectory to innermost trajectory. 
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Fig. 4. Phase space portrait for a = 0.5, b =c = d = 1 and initial condi-
tions (x0 =0.35, y0 = 0.35), (x0 = 0.5, y0 = 0.5), (x0 =0.95, y0 = 0.95) 

listed in order from outermost trajectory to innermost trajectory. 
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Fig. 5. The profile of the Hamiltonian H as function of t, for a = 0.5, b = 
c = d = 1 and initial conditions (x0 = 0.5, y0 = 0.5),  and  (x0 = 0.95, y0 

= 0.95) respectively. 
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Fig. 6. The profile of H(x, y) for a = 0.5, b =c = d = 1 and initial condi-
tions (x0 = 0.5, y0 =0.5),  and (x0 = 0.95, y0 = 0.95) respectively. 
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Fig. 8. The profile of the Lagrangian L as function of t for a = 0.5, b = c 
= d = 1 and initial conditions (x0 = 0.5, y0 = 0.5),  and  (x0 = 0.95, y0 = 

0.95) respectively. 
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Fig. 9. The profile of L(x, y) for a = 0.5, b =c = d = 1 and initial condi-
tions (x0 = 0.5, y0 = 0.5) and  (x0 = 0.95, y0 = 0.95)  respectively. 

B. The Bailey Model 
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Fig. 10. Graphical profile of the  numerical solutions x- individuals 
suspected  being infected and  y- individuals infected carriers, for  

k=1.5, initial conditions x0=0.55, y0=0.55 
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Fig. 11. Graphical profile of the  numerical solutions x- individuals 
suspected  being infected and  y- individuals infected carriers, for  

k=0.15, initial conditions x0=0.55, y0=0.55 
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Fig. 12. The phase space profile for  k=0.15, k=1.5
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Fig. 13. The profile of  the Hamiltonian H as function of t, for  k=0,15, 
k=1.5 and initial conditions x0 = 0.55, y0 = 0.55. 
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Fig. 14 The profile of H(x, y)  for  k=0,15,  k=1.5 and initial conditions 
x0 = 0.55, y0 = 0.55.
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Fig. 15. The profile of the Lagrangian L as function of t for k=0.15, 
k=1.5 and  initial conditions x0=0.55, y0 =0.55. 

0.2
0.3

0.4
0.5

0.6
0.7

0.5

0.6

0.7

0.8

0.9
0.195

0.2

0.205

0.21

0.215

xy

L

0
0.2

0.4
0.6

0.8

0

0.5

1

1.5
1.4

1.6

1.8

2

2.2

xy

L

Fig. 16. The profile of L(x, y) for for k=0.15, k=1.5 and  initial condi-
tions x0=0.55, y0 =0.55.
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C. The  Classical  Kermack-McKendrick  Model 
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Fig. 17 Graphical profile of the  numerical solutions x- individuals sus-
pected  being infected and  y- individuals infected carriers, for  k1=0.15, 
k2=0.05, k1=0.15, k2=0.35, k1=1.15, k2=3.05, resp. k1=2.15, k2=1.05  

and initial conditions x0=0.55, y0=0.55. 
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Fig.19 The profile of  the Hamiltonian H as function of t for  k1=0.15, 
k2=0.35, resp. k1=1.81, k2=1.5. 
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Fig.20 The profile of H(x, y)  for  k1=1.81, k2=1.5 and initial conditions 
x0 = 0.55, y0 = 0.55. 
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Fig. 21 The profile of the Lagrangian L as function of t for  k1=0.15, 
k2=0.35, resp  k1=1.15, k2=3.05 and initial condtions x0=0.55, y0=0.55 

D. 3D  Lotka-Volterra  System 
We consider the case 1	�abc , abb B�� 	� .

We set  and  1	��� cba ,1�� 0�B , 1	��  . 
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Fig. 22. The profile of the numerical solution (x(t), y(t), z(t)), for the 
initial conditions  (x0 = 0.5, y0 = 1, z0 = 2). 
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Fig. 23.  Phase space portrait for the initial conditions (x0 = 0.5, y0 = 
0.95, z0 = 2.95),  (x0 = 0.5, y0 = 0.5), z0 = 1.95),  (x0 = 1, y0 = 0.75, z0 
= 1.25),  (x0 = 2.1, y0 = 0.35, z0 = 1.55)  listed in order from outermost 

trajectory to   innermost trajectory. 
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Fig. 24.  Phase space for the initial conditions (x0 = 1, y0 = 0.25, z0 = 
2.5) The numerical solution presents a graphical profile  given by 

downward spirals. 
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Fig. 25. The profile of the Hamiltonian H1 as a function of t, for the 
initial conditions  (x0 = 2.1, y0 = 0.35, z0 = 1.55). 
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Fig. 26. The profile of the Hamiltonian H1 as a function of (t, x), (t, y) 
and (t, z), and for the initial conditions (x0 =2.1, y0 = 0.35, z0 = 1.55). 
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Fig. 27. The profile of the Hamiltonian H1 as a function of (x, y), (x, z) 
and (y, z), for the initial conditions (x0 = 2.1, y0 = 0.35, z0 = 1.55). 
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Fig. 28. The profile of the Hamiltonian H2 as a function of t, for the 
initial conditions (x0 = 2.1, y0 = 0.35, z0 = 1.55). 
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Fig. 29. The profile of  the Hamiltonian H2 as a function of (t, x), (t, y) 
and (t, z) , for the initial conditions (x0 = 2.1, y0 = 0.35, z0 = 1.55). 

0 1 2 3 4

00.511.52
3.3884

3.3884

3.3884

xy

H
2

0 1 2 3 4

00.511.52
3.3884

3.3884

3.3884

xz

H
2

0 0.5 1 1.5 2

00.511.52
3.3884

3.3884

3.3884

yz

H
2

Fig. 30. The profile of the Hamiltonian H2 as a function of (x, y), (x, z) 
and (y, z) , for the initial conditions (x0 = 2.1, y0 =0.35, z0 = 1.55). 
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E. Observations 
The predator population begins to decline shortly after 

the prey population starts to decrease. Then after the prey 
population begins to recover, the predator population also 
starts to recover, in agreement with [18]. They share a 
common period, Fig. 1, Fig. 2. 

The total energy H  takes constant values for different 
values of parameters a, b, c, d and different initial condi-
tions, as we presented in Fig. 5, Fig. 6. Thus we are in 
agreement with the property to be a conservation law. 

For the Bailey model of epidemics, in the case when 
the rate k of disease transmission is smaller than 1, we 
can observe a rapid stabilization  of the two main sizes x 
and y, while in the case when  is greater than 1 the var-
iation is more  pronounced (Fig. 10 and Fig. 11). 

k

In the case of Kermack-McKendrick classical model 
we remark that in the corresponding case when the ratio 

 is greater than 1 the stabilization of the two main 
sizes x and y became to appear after relative long inter-
val, which contains a peak of infected population y. For a 
smaller ratio 21 the infected population y dramati-
cally decreases (Fig. 17), in agreement with [16]. 

21 / kk

/ kk

In the 3D case displaying the graph of  x, y and   z 
across  time t, one observes the periodic behavior of the 
system.  Each predator population also peaks and then 
begins to decrease shortly after its respective prey popu-
lation  peaks  and  begins to decrease, Fig. 22. 

The two Hamiltonians 1 and 2   associated to the 
3D case of Lotka-Volterra system are characterized 
through  our numerical study by constant values, for dif-
ferent initial conditions, as we presented in Fig. 25 - Fig. 
30. 

H H

VII. CONCLUSIONS 
We perform a computational analysis of these mathe-

matical models, in order to approximate different types of 
invariants and main sizes, through numerical codes based 
on appropriate numerical calculus techniques for numeri-
cal integration of these type problems. Thus, starting 
from certain initial value problems associated to our 
models, we obtain the numerical solution and we develop 
the numerical characterization of the main sizes previ-
ously analysed from the geometrical point of view. Thus 
we are able to make different comparisons between these 
studied quantities for different values of parameters, for 
different initial conditions etc. Taking into considerations 
that the predator and prey populations display a variety of 
dynamic patterns, we emphasize that the present study 
can be useful also to make certain adjustments for the 
parameters involved in the differential equations in order 
to calibrate more precisely the models to better predict 
some realistic situations and take account for the differ-
ences from one example to the next. 
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