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Abstract— Voltage controlled microwave oscillators are 
used in digital communication systems. Pairs of coupled and 
synchronized voltage controlled oscillators are used to con-
trol the phase in microwave antenna arrays as an alterna-
tive to other methods. A particular phase shift can be ob-
tained by choosing the free-running frequencies of the oscil-
lators in the array. The aim of this paper is to analyze such a 
pair of coupled oscillators by targeting the phase shift be-
tween their output voltages, the coupling circuit being a 
passive two-port passive network. For this purpose, we use 
our computer-aided analysis tool ANCSYAP (ANalog Cir-
cuit Symbolic Analysis Program) capable to build the sym-
bolic expressions of desired network functions or global 
parameters (as input/output/transfer impedances and ad-
mittances, fundamental or hybrid parameters) and to find 
the resonant frequencies of any two-port network as func-
tion of global parameters. The analysis is performed both in 
time domain and in frequency domain and in this way we 
can compute the shift phase analytic expression. To prove 
the procedure, we include two relevant examples. 

I. INTRODUCTION 
A very good directivity of microwave antennas for digi-

tal communication systems is obtained with antenna ar-
rays with phase control. An alternative method to accom-
plish the phase control is based on the microwave voltage 
controlled oscillators (VCO) [1-8, 11-13, 17-21]. For such 
an oscillator, the level of an input voltage controls the 
frequency of the output. 

The radiation pattern of the antenna array is steered in a 
particular direction by controlling the phase gradient be-
tween the signals applied to adjacent elements of the ar-
ray. The required phase shift between two adjacent ele-
ments can be obtained by detuning the free-running fre-
quencies of the outermost oscillators in the array [2, 3, 7, 
11-13]. In [4-8, 18-20] it is shown that the resulting inter-
stage phase shift does not dependent on the number of 
oscillators in the array.  

We consider in this paper a pair of Van der Pol oscilla-
tors coupled through a two-port passive linear network, 
used in synchronized antenna array applications (fig. 1). 
We performed a detailed computer-aided analysis both in 
time domain and in frequency domain to find the phase 
shift between the output voltages of the oscillators, as 
main characteristic imposed by the application require-
ments. For this purpose, we use our computer-aided 
analysis tool capable to build the symbolic expressions of 
desired network functions or global parameters (as in-
put/output/transfer impedances and admittances, funda-
mental or hybrid parameters) and to find the resonant fre-

quencies of any two-port network as function of global 
parameters [10-12, 17-20]. 

 

 
Fig.. 1. A pair of Van der Pol oscillators coupled through a two-port 

passive linear network. 
 
The active part of each Van der Pol oscillator can be 

modeled as a voltage controlled resistor (fig. 1) [1, 3, 6-9]. 
This latter can be modeled through two linear resistors 
with negative slopes. In this manner, the model circuit 
becomes linear and it can be analyzed using the complex 
representation [3, 6-12]. 

The nonlinear characteristics of the two voltage-
controlled nonlinear resistors are expressed as: 
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where a is the negative conductance necessary to start the 
oscillation and b a parameter used to model the saturation 
phenomenon. 

Assuming sinusoidal voltages of the form 
� � � �tAtv 0sin �
� , the currents of the nonlinear resistors 

become: 
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Therefore, by neglecting the third harmonic, the nonlin-
ear resistors can be modeled by linear resistors with the 
conductances: 
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where A1 and A2 are magnitudes of the voltages v1 and v2. 
The complex admittances, in the sinusoidal behavior, 

corresponding to the two oscillators have the following 
expression: 
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 The equations in the admittances, in the sinusoi-
dal behavior, of the coupling two-port passive linear net-
work have the expression: 
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Some examples of the pair of oscillators coupled 
through a two-port passive linear circuit are presented in 
section II more detail. In this way we prove how the cou-
pling circuit parameters have a deeply influence on the 
phase shift between the output voltages of the two Van der 
Pol oscillators. We extend our study on the case where the 
coupling circuit is replaced by two-port passive complex 
networks. 

II. TWO COUPLED VAN DER POL OSCILLATORS THROUGH 
A TWO-PORT PASSIVE NONLINEAR NETWORK 

The base of the oscillator analysis is represented by 
VCO’s that have different free-running frequencies and 
are able to lock at a common frequency to coupling cir-
cuits, [1, 2, 4, 8, 17 - 20]. Two oscillators coupled by a 
resonant network can be synchronized at the same fre-
quency [7, 19, 20]. But the synchronization is deeply de-
pendent on the coupling network, [1-8, 11-13]. Coupled 
microwave oscillators have been modeled as simple Van 
der Pol oscillators [1, 3, 6, 7, 15-21]. This model provides 
satisfactory results for many applications. Also the sim-
plicity of the equations is very helpful. 

We consider, as the first example, two oscillators cou-
pled through a RLCM network, shown in fig. 2.  

The topologies of both oscillators are identical, but the 
parameters of the circuit elements are chosen to obtain 
different free-running frequencies. We intend to find the 
synchronization frequency which depends on the resonant 
frequencies of oscillators and of the coupling circuit. 

 

 
Fig. 2. Two parallel resonant circuits coupled through a RLCM network. 

 
We consider the following numeric values of the cir-

cuit parameters in Fig. 1: a = 0.008 S, and b = 0.00071 
S/V2 , C1 = 0.01 nF, C2 = 0.02 nF, Cc = 2.53 pF, L1 = 
2.8095 nH, L2 = 1.2678 nH, Lc = 20.0786 nH, M = 
15.05895 nH, R = 3500 � and Rc = 113.5 �. The resonant 
frequencies for the two oscillators are: 
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The complex admittances, in the sinusoidal behavior, 
corresponding to the two oscillators and to the coupling 
RLCM circuit have the following expression: 
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 := Y11_c -0.3 10-11 I ( )	 #�# #	#0.3 10-9 I � 0.6 10-19 �2 1. �
#	# #	# #�#1. 0.4 10-28 I �3 0.2 10-18 �2 0.6 10-9 I �  

 := Y12_c 0.2 10-30 I �3

#	# #	# #�#1. 0.4 10-28 I �3 0.2 10-18 �2 0.6 10-9 I �  

 := Y21_c 0.2 10-30 I �3

#	# #	# #�#1. 0.4 10-28 I �3 0.2 10-18 �2 0.6 10-9 I �  

 := Y22_c 0.253 10-11 I � ( )#	# #�#1. 0.6 10-19 �2 0.3 10-9 I �
#	# #	# #�#1. 0.4 10-28 I �3 0.2 10-18 �2 0.6 10-9 I �  

(7) 

 
The resonant frequency of the RLCM coupling circuit is: 

 := f_Y11 [ ], , ,0. 0.23259082108 0.30737334108 0.61411659108  
 := f_Y12 [ ], , , ,0. 0. 0. 0.61537578 10 8 0.23211489 10 8  
 := f_Y21 [ ], , , ,0. 0. 0. 0.61537578 108 0.23211489 108  

 := f_Y22 [ ], , ,0. 0.23259082 108 0.30737334 108 0.61411659 108  
(8) 

 
We can denote that the values of the frequencies corre-

sponding to the complex transfer admittances Y11 and Y22 
(Y12 and Y21) coincide, because the two-port passive linear 
network is symmetric one. 

In fig. 3 the waveforms for the output voltages corre-
sponding to the two oscillators are shown, and in fig. 4 the 
Fourier characteristic of the two waveforms is presented. 

Performing a Spice simulation (or Matlab simulation 
based on the state equations, [10-18]) we get the magni-
tudes values A1 = 2.2393 V, A2 = 3.201 V (Fig. 2), and 
the synchronization frequency fs = 1.0056 GHz for the 
initial conditions vC1(0) = 2.0 V and vC2(0) = 2.0 V (Fig. 
3). According to the assumption presented in Section I, in 
sinusoidal behavior, the two voltage-controlled nonlinear 
resistors were substituted by two linear resistors with the 
conductances given by the expressions (3). Therefore, the 
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circuit in fig. 2 can be analyzed by the complex represen-
tation method [10, 11, 16-21]. 

 

Time [ns] 

(498.918n,3.2010) 
(499.033n,2.2393)

498.0 498.5 499.0 499.5 500.0
-4.0V 

-2.0V 

0V

2.0V 

uC2 = uC11 = V(4)

uC1 = V(1) 

4.0V 

 
Fig. 3. Waveforms of the oscillator voltages: vC1 = V(1) and vC2 = V(4). 

The nodal equations in complex form for the consid-
ered circuit are: 
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Fig. 4. Determining of the synchronization frequency. 
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meric values of the circuit parameters specified above, 
then the equation (9) becomes a system of two nonlinear 
algebraic equations with the unknowns X and �. Solving 
these algebraic equations, we obtained the following re-
sults: 
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In order to compute the phase shift, using a Spice or 
Matlab simulation, we can use the following relation: 

 � � 360_2_1_21 
	
� mosmossSpice ttf$ � (11) 

where fs - is synchronization frequency (see fig. 4) and 
 represents the time moment when the 

first (second) oscillator voltage is maximum (see fig. 3). 
Replacing the numeric values, the result is: 

)( _2_1 mosmos tt

 )	� 2787.39_21 Spice$  (12) 

Taking into account the magnitudes of the output volt-
ages, the ratio of these magnitudes has the value: 

 70093.0
201.3

2393.2

2

10 ���
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Spice V

VX  (13) 

We can denote the good agreement between the results 
obtained by Spice simulation and by our procedure, the 
error being very small: 
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We consider, as second example, the circuit repre-

sented in fig. 1, when the coupling passive linear circuit 
has the structure in fig. 5. 

 

 
Fig. 5. Two-port passive network structure.  
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Performing a Spice simulation (or Matlab simulation), 
for the numeric value parameters: Rc = 200 �, Cc1 = Cc2 = 
Cc = 5.0 pF, Ccc = 6.5 pF, Lc1 = Lc2 =  Lc =  10.6 nH, M = 
3.71 nH, Rl = Rload = 250 �, RL1 = RL2 = RL = 1.352 �, g = 
0.0002 S, a = 0.008 S, and b = 0.00071 S/V2 , we get the 
magnitudes values A1 = 1.605 V, A2 = 2.4449 V (fig. 6), 
and the synchronization frequency fs = 1.1522 GHz (fig. 
7), with the initial conditions v1(0) = 2.0 V and v2(0) = 
1.0V. 

Because the circuit in fig. 5 has a high complexity, the 
expressions of the transfer admittances (Y11, Y12, Y21 and 
Y22) in full-symbolic form are too complicated ones. The 
transfer admittances in function of the angular frequency 
� have the expressions: 

 := Y11_c 	
0.005( )	 #�# #�# #	# #	#0.810-50 �4 0.210-39 I �3 0.810-30 �2 0.110-19 I � 0.210-10

( )	 #�# #�#0.410-30 �2 0.310-22 I � 0.210-10 ( )#	# #�#1. 0.310-19 �2 0.510-11 I �
 

 := Y12_c 	
0.005 ( )#	# #	# #�# #�#0.8 10-50 �4 0.8 10-40 I �3 0.8 10-30 �2 0.4 10-20 I � 0.2 10-10

( )	 #�# #�#0.4 10-30 �2 0.3 10-22 I � 0.2 10-10 ( )#	# #�#1. 0.3 10-19 �2 0.5 10-11 I �
 

 := Y21_c 0.00002( )	 #�# #�# #	# #	#0.2 10-47 �4 0.2 10-37 I �3 0.1 10-27 �2 0.8 10-18 I � 0.3 10-8

( )	 #�# #�#0.4 10-30 �2 0.3 10-22 I � 0.2 10-10 ( )#	# #�#1. 0.3 10-19 �2 0.5 10-11 I �
 

 := Y22_c 0.00002( )#	# #	# #�# #�#0.4 10-47 �4 0.5 10-37 I �3 0.3 10-27 �2 0.2 10-17 I � 0.6 10-8

( )	 #�# #�#0.4 10-30 �2 0.3 10-22 I � 0.2 10-10 ( )#	# #�#1. 0.3 10-19 �2 0.5 10-11 I �
 

                                                                              ����������������������������������������������������������������������������������������������(15) 

 

Time [ns] 
498.0 498.5 499.0 499.5 500.0

-3.0V 

-2.0V 

-1.0V 

-0.0V 

1.0V 

2.0V 

3.0V 

uC2 = V(4) 

uC1 = V(1)

(498.661n,2.4449) 

(498.574n,1.6050) 

 
Fig. 6. Out voltage waveforms of each oscillator. 

Due the circuit in fig. 7 is a symmetric one, from the re-
lations (15) it comes out that the transfer admittance Y12 is 
equal to Y21. 

The current controlled nonlinear resistor currents vs 
time is shown in fig. 8. 

By solving the equations (9) and by Spice or Matlab 
simulation, see relation (11), the results have the following 
structure: 

 

.0869.36 ;9832.35
rad/s; 10358.72

 ; 103445.72

;65647.0 ;656350 = 
 ;38546.05312.0

GHz;  1522.1
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_
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	�

�
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Spices

rad/s

X.X
jX

f

$$

�

�

 (16) 

 
From the relations (16) we can denote that the results 

obtained by Spice simulation are very close to the ones 
obtained by our procedure. 

 

1.13 1.15 1.17
0V

0.5V 

1.0V 

1.5V 

2.0V 

2.5V 

UC2 = V(4) 

UC1 = V(1) 

(1.1522G,1.6971) 

(1.1522G,1.1244)

1.12 1.14 1.16 1.18

Frequency [GHz]
 

Fig. 7. Synchronization frequency obtained by a Fourier analysis. 

 
 

Time [ns] 

498.0 498.5 499.0 499.5 500.0

iRcv2 = I(G16)

iRcv1 = I(G2)

-10mA 

-20mA 

0A

10mA 

20mA 

 
Fig. 8. Nonlinear current controlled resistor currents iRcv1 and iRcv2 vs 

time. 

III. CONCLUSION 
The phase shift between output voltages of each oscil-

lator and the way how oscillators work are very important 
in orienting the radiation pattern, in a phased antenna 
array, in a certain direction. Researches are performed so 
that a particular phase shift can be obtained by choosing 
the free-running frequencies of the oscillators in the ar-
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ray. In this paper different working behaviors of analysis 
were applied in order to compare the results obtained and 
also, for a better understanding of the influence the pa-
rameters have in the oscillators’ synchronization. The 
main limit we encounter is that the analysis is made 
around the synchronization frequency. Thus, there is a 
risk of malfunction outside this region. 

Using our software tool ANCSYAP, we performed the 
symbolic analysis of an antenna array in order to compute 
in symbolic, numeric-symbolic or numeric form the cou-
pling circuit parameters. This software has been enhanced 
with dedicated routines for generating the admittances, 
impedances, H hybrid and fundamental parameters of the 
coupling networks, which are modeled by passive linear 
two-port circuits. 

The symbolic or numeric-symbolic (when it is consid-
ered as symbols only a part of the parameters associated 
to the passive couple circuits) expressions of the coupling 
circuit parameters are useful in writing the dynamic equa-
tions of an array of coupled oscillators for the automatic 
design of these devices. 

The phase shift between the output voltages of the cou-
pled oscillators can also be computed analytically, see 
relation (13), but, in this case, we must do very many 
simplifications because the equations describing the os-
cillators are nonlinear. 
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