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Abstract – The issue of mathematical modeling in order to 
simulate physical processes or physical systems, perma-
nently preoccupy a significant number of researchers. The 
sustained efforts being made in this direction are deter-
mined by the benefits that simulation can provide and by 
the development of software packages capable of perform-
ing such simulations. It is obvious that mathematical model-
ing followed by simulation allows the study of possible situa-
tions that would be difficult to achieve in real systems and 
could lead to an irremediable defect. If the mathematical 
modeling of stationary processes with respect to time is 
pretty well set, for the transient process simulation is still 
much to study. The mathematical equations describing such 
processes are generally of higher order, sometimes they are 
transcendent, and thus harder to solve. In the paper the 
authors are concerned with the modeling of transient ther-
mal processes. When analyzing electrical heating systems, 
the main problem occurs due to heat transfer through the 
walls. This phenomenon appears at multilayered cylindrical 
walls, when heat is transferred through it, and a part of it is 
stored into the wall as internal energy. This paper aims to 
determine some mathematical relationships which describe 
the heat storage processes in components with cylindrical 
geometry. Determined mathematical equations will be used 
furthermore in the modeling of transient thermal processes 
in structures with cylindrical geometry. This allows the 
simulation of multilayer insulation systems under a tran-
sient thermal regime for a long time, using Matlab-Simulink 
toolkit.  

Keywords: cylindrical symmetry, energy balance, heat trans-
fer, stored energy. 

INTRODUCTION 
One of characteristics of the modern times is repre-

sented by a large computer use in most various fields. This 
is due, mainly, to increased speed and computing power 
by the improvement of hardware structures. But equally 
important is the quick development of some software 
packages that enable the development of numerical simu-
lation software dedicated to different applications 

A simulation performed correctly has the advantage 
that can be found optimal solutions even before it starts 
the physical design of a plant. Also, through simulation it 
can be determined the failure modes which, in many 
cases, can cause destructive effects on plants. So, during 
the design, one can take the necessary steps to avoid their 

occurrence. 
In the simulation of technical processes researchers are 

often faced with problems that are difficult to be mathe-
matically modeled. Some other times mathematical mod-
els become extremely difficult. If for steady-state phe-
nomena the mathematical models and simulations are 
quite well developed, in transient regime things get com-
plicated. Often these regimes are carried out quickly, es-
pecially if one wants to achieve a plant driven in real-time 
by a computer system. This is one of the reasons by which 
mathematical models that are based to the simulation 
should have a simple structure. 

The use of simplified equations, but which obey physi-
cal phenomena, has allowed modeling and simulation with 
a good accuracy of the transient heat transfer through a 
plane multilayer wall (e.g. the wall of a furnace for heat 
treatment). These results were partially presented in [1] 
and [2]. Figure 1 shows the Matlab Simulink model of a 
plane-parallel multilayer wall of a furnace, and in Figure 2 
is detailed the Simulink model of the intermediate layer. 
Note that the model has been designed to allow very easy 
insertion of one or more interlayers, based on the same 
modeling structure. In this case it was considered that, in 
the modeling and simulation, the temperature in each layer 
composing the wall modifies by a linear law. The tem-
perature from the middle of that layer represents the aver-
age of temperatures from its sides (interior and exterior) 
[6, 9, 10]. The linear distribution of the temperatures in-
side the layer of the wall allowed rapid computing of the 
heat accumulated or disposed by the wall between two 
consecutive time moments, belonging to the transitory 
process of heating respectively of cooling the furnace. 

On the other hand, there are many cases to be mathe-
matically modeled and possibly simulated the heat transfer 
through the layers of multilayer walls with cylindrical 
symmetry. Experience has led to the desire to determine 
mathematical relationships as simple, that could character-
ize the physical phenomena of the cylinder walls and that 
could be used similar to those that led to the modeling of 
plane walls.  

This paper aims to find a simple way to mathematical 
modeling of thermal systems with cylindrical structure, 
based on which to build future simulation software of 
multilayered cylindrical thermal insulation commonly 
found in electro-thermal plants or in energy transport ca-
bles. 
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Fig.1. The block diagram of the wall. 

 

 
Fig.2. The thermo-insulated layer. 

 

PRELIMINARY 
In the transient modeling and simulation, it should be 

pointed out that each layer of the composite wall will ac-
cumulate or provide different thermal energy from the 
heat flow that crosses it. The stored energy is proportional 
with the mass, specific heat of the layer and the tempera-
ture difference measured between two successive time 
moments. For the entire volume of the wall, the stored 
energy can be calculated: 

   [J] (1) ( )∫ θΔ⋅⋅=
V

vpvvs vcmQ d

where:  

  = the unit volume mass [kg]; vm
  = specific heat in the unit volume [J/(kg·K)];  pvc

 vθΔ = the temperature difference in the unit volume [K]. 
The problem during modeling and simulation of this 

simple formula is to determine the change of the tempera-
ture field inside the wall. This determination must be con-
ducted with enough high speed, in order to allow its use in 
a real-time system for monitoring and control. 

For the plane-parallel wall, crossed by a transverse heat 
flux, at which internal temperatures of each layer are dis-
tributed linearly between the temperatures of the two 
sides, the average temperature is computed as the arithme-
tic average of the temperatures of the sides [1, 2]. 

In order to achieve a faster computation, for the ho-
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mogenous layers ( . ), it is preferable to deter-
mine an equivalent increase of temperature (

constcp =

echθΔ ), 
which then will be used to determine the stored heat. 

 echptots cmQ θΔ⋅⋅=   [J] (2) 

where: 
    the mass of entire wall [kg].  =totm

The problem becomes more delicate when discussing 
about the heat transfer through a composite tubular wall, 
thus based on a cylindrical model.  

In this case the thermal diffusion equation will be writ-
ten in cylindrical coordinates [4, 7]: 
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where: 
-  = thermal conductivity [W/(m·K)]; λ
- = the rate at which energy is generated per unit of 

volume of the medium [W/m3]; 
qw

- 
t

cp ∂
θ∂

⋅⋅ρ = the time rate of change of the thermal en-

ergy of the medium per unit of volume [W/m3]; 
The paper presents a method of determining the repre-

sentative layer (radius) within a tubular insulator. Its tem-
perature can be used to compute the thermal energy stored 
in the entire insulating layer. 

It is envisaged a single insulating, cylindrical layer, 
with length L  , crossed by a radial heat flow (Fig. 3). 

 
Fig.3. Cylindrical layer. 

According to [3], in steady-state conditions, considering 
that within the insulating material there are no sources of 
heat, equation (3) becomes: 
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Considering , the heat current (constant in 
steady-state regime) that will cross the insulating layer, 
oriented from the inside to outside, will be equal to: 

sesi θ>θ
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where: 
  L = the cylindrical layer length [m]; 
  = outside radius [m]; er
  = inside radius [m]. ir
  = thermal resistance of the hollow cylinder [K/W]  ciltR −

For λ = const., equation (4) will have the solution: 

 ( ) 21 ln CrCr +⋅=θ  

The constants are determined considering the boundary 
temperature conditions: 
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Finally we get the following formula for the tempera-
ture, also described in [5]: 

 ( ) se
eei

sesi
r r

r
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⋅

θ−θ
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Relation (6) indicates that in each moment the tempera-
ture in any point inside the wall (at distance r  from the 
axis) depends on the temperature difference between the 
two outer surfaces. During the transient process at least 
one parameter shall be modified. 

DETERMINING THE EQUIVALENT COMPUTATIONAL 
RELATIONSHIPS 

When determining the amount of energy stored in the 
cylindrical insulation wall, it will be considered an ele-
mentary cylindrical volume, very thin, with the inner ra-
dius ( )2d rr −  , the outer radius ( 2d rr + )  and length L . 
The elementary volume considered for m1=L , will be: 

 ( ) ( )( ) rrrrrrLVelm d22d2d 22 ⋅⋅π=−π−+π⋅=  (7) 

where: 
   r = computational radius  [m] [ ei rrr ,∈ ]

Since the elementary cylinder is very thin ( ), it 
can be considered as limit that, in a certain moment, the 
temperature is defined throughout its entire volume by 
equation (6). If we consider the initial temperature of the 
whole insulating coating as being equal to the ambient 
temperature ( 0

0d →r

θ ), it can define the warming of the outer 
surfaces also in the elementary volume: 

  (8) 
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If we modify equation (6) as: 
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we obtain the formula for calculating the heating of the 
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particles in the elementary volume: 
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The energy stored in the elementary volume: 

 =θΔ⋅⋅⋅ρ=θΔ⋅⋅= relmprpelmelm VccmQ  (10)
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This is used to compute the part of the heat flow which 
is stored as heat in the whole insulating cylinder: 
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Calculations finally lead to the value: 
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Equation (11) implemented in a numerical simulation 
system, involves making a large number of calculations 
for each simulation step [8]. 

In order to increase the simulation speed we will try to 
determine an equivalent heating (for the entire cylindrical 
insulating layer of unitary length). Considering the value 
of the equivalent heating as being equal to the heating of 
the particles at distance x from the axis ( xech θΔ=θΔ ), 
according to equation (2) is obtained: 

 ( ) xpies crrQ θΔ⋅⋅ρ⋅−⋅π= 22  (13) 

Equivalence in terms of energy implies that formulas 
(12) and (13) lead to the same result and allows us (after 
equivalence and calculations) to determine the equivalent 
heating: 

( ) ( ) ( )sise
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Using the transformations defined by (8), we will get 
the temperature at distance x  from the axis: 

 ( )sesisex K θθθθ −⋅+=  (15) 

where constant K  can be determined based on the ge-
ometry of the cylindrical insulating layer: 

 ( ) ( ) 1
1

ln2
1

2 −
−

⋅
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ieie rrrr
K  (16) 

If in (6) it is considered xr =  and  is replaced by 
 from (15), we can determine the distance measured 

from the axis of the cylinder, where the particles were 

heated with 

rθ

xθ

echθΔ . This value is: 
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The x  may be determined based on the geometric di-
mensions of the intermediate layer. 

THE ANALYSIS OF RESULTS 
Graphical representation of the results expressed by 

equations (15) and (17) allow verifying their correctness 
and highlighting some important conclusions. For this, the 
sizes erx  and K  are plotted as functions of the ratio 

ie rr .  
The following figures show such representations for 

different areas of variation of the amount of the rays 
ie rr . 

 
Fig.4. Equivalent radius x for [0<re/ri<500]. 

 
Fig.5. K=K(re/ri ) for [0<re/ri<500]. 

 

 
Fig.6. Equivalent radius x for [0<re/ri<50]. 

192

Annals of the University of Craiova, Electrical Engineering series, No. 39, 2015; ISSN 1842-4805_______________________________________________________________________________________________



 
Fig.7. K=K(re/ri ) for [0<re/ri<50]. 

 
Fig.8. Equivalent radius x for [0<re/ri<5]. 

 
Fig.9. K=K(re/ri ) for [0<re/ri<50]. 

Solution correctness is easily accomplished considering 
the limit case where the insulating cylinder is extremely 
thin, i.e. . In this limit case their ratio becomes 
unitary and the value for 

ie rr →

ei rxr ≤≤  will lead to 1→erx  
(according to Fig. 8). For such very thin coating it can be 
considered that all the points have the same temperature 
(by default ). According to Figure 9, we obtain 

 (the maximum value possible) and substituting it 
in equation (15) it results: 

θ=θ=θ ei
5.0=K

 
( ) ( )

θ=
θ+θ

=

=θ−θ⋅+θ=θ−θ⋅+θ=θ

2

5,0

sesi

sesisesesisex K
 (18) 

The analysis of the curves in Figure 4 ÷ Figure 9 shows 
a rapid decrease of the ratio erx from the unitary value to 
about 0.65 for thin tubular insulating materials (with the 
ratio 5<ie rr ). Further increase of the thickness of the 
insulating material leads to a slow decrease of the ratio 

erx , which tends to stabilize at a value less over 0.6. 
Parameter K  has a relatively similar evolution, except 

that at high values of ie rr its speed of decrease is more 
pronounced. A synthetic representation of the above con-
clusions can be followed in Table I. 

TABLE I. 
x/re AND  K  VALUE RELATIVE TO  re/ri 

re/ri x/re K 
1 1 0.5 
2 0.7642 0.3880 
3 0.6958 0.3301 
5 0.6486 0.2690 
10 0.6208 0.2070 
20 0.6111 0.1644 
50 0.6075 0.1274 

100 0.6068 0.1085 
200 0.6066 0.0943 
500 0.6065 0.0805 

CONCLUSION 
Generally, an equivalent mathematical relations system 

for describing a physical system can be achieved if first 
we establish a clear criterion which represents the base of 
the equivalence.  

In this case the criterion was "the equivalence in terms 
of the energy stored” in the material. The obtained rela-
tions will be used for the simulation, using Matlab-
Simulink toolkit, of some electro-thermal systems with 
cylindrical symmetry. Implementation of the formulas 
(15), (16) and (17) allows adapting the modeling system 
shown in Figure 1 and Figure 2 for the multi-layer walls 
with cylindrical symmetry. 
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