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Abstract - For easy removal of cylindrical items from the 
shaft, they are heated on their external cylindrical surface 
for thermal dilatation. The best result is obtained if the 
temperatures gradient inside the item is highest on the sepa-
ration surface. In the paper, considering a suddenly occur-
ring constant high temperature on the external cylindrical 
surface of the homogeneous item, the shaft with the same 
thermal diffusivity and neglecting the contact thermal resis-
tance, the transitory thermal field is analyzed and optimal 
time for item removal is determined. Example is given. 

Keywords: bearing racer removal, induction heating, transient 
thermal field, numerical inverse Laplace transform, tempera-
ture penetration depth, characteristic length 

I. INTRODUCTION 
   For easy removal of cylindrical ferromagnetic items 
from a shaft, they are heated on their external cylindri-
cal surface causing them to expand. For heating direct 
flame or induced eddy currents are used. Since at 50 Hz 
frequency the skin depth is about 1 mm, in both cases a 
suddenly occurring constant high temperature θ* on the 
external cylindrical surface of the homogeneous item 
can be considered. 
   On the separation from shaft surface a thin air gap δ 
can be considered and the temperature drop on this gap 
will be, according to the Fourier law for thermal flux 
density, as follows: 
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where λ1 and λ0 are the item and air thermal conductivi-
ties and r is the internal radius of the item. It results that 
this temperature drop between item and shaft is maximum 
when the temperature gradient on the internal 
surface of the item is maximum. For small Δθ/θ* this air 
gap can be neglected and temperature gradient on the in-
ternal surface of the item can be approximated with the 
temperature gradient in homogenous cylinder at r radius. 

r|gradθ

   In fig. 1 the transitory thermal field is shown in the 
half infinite homogenous rod (wire) with A cross-section 
and c, γ, λ specific heat, density, thermal conductivity, 
for negligible heat transfer on the external surface of the 
rod (infinite thermal time constant of the rod), when a 
temperature step θ* is applied in x = 0. In these condi-
tions the temperature in the point x will be [1]:  
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where a is the thermal diffusivity of the rod material.  
   It can be observed that at fixed distance x1 from the 
hot point, when t = 0 and t = ∞ the |grad θ| = 0, so there 
is an optimal time when |grad θ| is maximum at given 
distance from the hot point. In the paper this time is 
determined, neglecting the contact thermal resistance 
(item-shaft), i.e. the delay from the temperature step 
application on the external surface of the item up to the 
instant when the maximum temperature gradient reaches 
the separation surface of the item from the shaft. 

 
Fig. 1:Temperature distribution in a lossless semi-infinite rod when 

temperature step is applied at the end 

II.  ONE DIMENSIONAL MODEL  
   With given assumptions, the relative temperature θ/θ* 
inside the cylinder depends only on the radius r and the 
time and, close to the hot external cylindrical surface 
with radius r0, is given by (2), for x = r0 – r. 
   The temperature gradient at x distance from the hot 
surface is: 
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Its modulus */|grad| θθ  reaches the maximum when 
the derivative is zero: 
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It results the optimal diffusion time for x distance from 
the hot layer is:  

a
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   This result is also valid for not negligible, but constant 
heat transfer coefficient on the surface of the rod, i.e. 
finite thermal time constant τ. 
   Really, in this case the temperature can be written as 
follows [1], [2]: 
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The dimensionless temperature gradient at x distance 
from the hot cross-section of the rod, with τ thermal 
time constant, results from the following equation: 
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For given x, z depends only on time, so the modulus 
 reaches the maximum when its z deriva-

tive is equal to zero: 
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This result agrees with (5). 
   The maximum modulus of dimensionless temperature 
gradient at x distance from the hot surface (when the 
time constant τ is not infinite) will be: 
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   The temperature at distance x at optimum time results 
from (6) and (8): 
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The dependence on X of the temperature and of the 
modulus of the maximum dimensionless temperature 
gradient at optimal time is given in the next figure. 

 
Fig. 2. Maximum temperature gradient and corresponding tempera-

ture versus the relative distance from the hot layer 

For X < 0.1 can be considered X = 0 (infinite time con-
stant) and the maximum temperature gradient in K/m 
inside the rod at x distance from the hot layer will be: 
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and the temperature (2) at x distance from the hot layer 
will be on the topt: 
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The equations (5) and (6) can be used also for cylindri-
cal items for r > 0.85r0. For r < 0.85r0 a two dimen-
sional cylindrical must be used. 

III. TWO DIMENSIONAL AXISYMMETRIC MODEL. 
   In this case, we will consider a homogenous cylinder 
at ambient temperature on which external cylindrical 
surface suddenly a temperature step θ* is applied. 
   Due to the symmetry the temperature will be consid-
ered as function only of radius and time and the heat 
transfer equation becomes. 
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where m is the cylinder (item plus inside shaft) mass, Si 
are the cooling surface areas and αi the corresponding 
average heat transfer coefficients. 
   For the Laplace transform of the temperature with 
respect to the time T(r, s) it results the following modi-
fied Bessel equation [1], [3]: 
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We will consider the temperature of r0 radius cylindrical 
surface at t = 0 instantly rising from 0 to θ* and constant 
after that. At r equal to zero the temperature must re-
mains finite one: 
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The solution of this problem is expressed by modified 
Bessel functions of zero order: 
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   In many cases, on the cooling plane surfaces the heat 
transfer is relatively very small and the surface heat 
transfer coefficient α can be considered zero (the ther-
mal time constant τ (13) can be considered infinite). 
   Since there is not closed form of the original of (16), 
using the best located nodes [4] it can be enough exact 
calculated, with the equation: 
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The coefficients Ai and the nodes pi are calculated in [4] 
with 20 significant digits and approximately given in the 
next table. 

TABLE 1 
p AND A VALUES [4] 

 

p

0
0
1
2
3
4
5
6
7
8
9
10

0
5.225+15.73i
5.225-15.73i

8.776+11.922i
8.776-11.922i
10.934+8.41i
10.934-8.41i

12.226+5.013i
12.226-5.013i

12.838+1.666i
12.838-1.666i

= A
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-10.349+4.111i
-10.349-4.111i

186.327-253.322i
186.327+253.322i

3-858.652+2.322i·10
3-858.652-2.322i·10

3 31.552·10 -8.44i·10
3 31.552·10 +8.44i·10

4-868.461+1.546i·10
4-868.461-1.546i·10
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We can write simpler this equation using a basic time 
unit tb: 
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   For infinite time constant the values given by last 
equation agree with the exact solution given in [3]. 
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where J0, J1 are the Bessel functions and βi the roots of 
J0. For several values of t* the temperature distributions 
when τ*= ∞ are shown in fig. 3. 
   The temperature gradient results from (18) [5] 
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We will write this equation as dimensionless quantity, 
using the basic time tb: 
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  The above quantity is a function of three variables and 
for given ρ and τ* can be found an optimal value t*opt of 
t*, using the Minerr function from Mathcad. 
If τ* > 100 for temperature gradient evaluation can be 
used the equation which results from (19): 
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The dimensionless temperature gradient G∞ (for τ* = ∞) 
versus relative diffusion time is shown in fig. 4 for sev-
eral values of ρ. 
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Fig. 3 Temperature distribution in homogenous cylinder with τ*= ∞ 
at several times t* after temperature step application on external 

cylindrical surface 

 

 

Fig. 4 Dimensionless temperature gradient G∞ versus relative diffu-
sion time, ρ = r/r0 parameter, + . G∞ at optimal time (23) 

 
Calculations made for τ* > 0.02 showed that the optimal 
time t*opt is independent on τ* and depends only on ρ. 
Example of calculation and the obtained values of t*opt 
for two different values of τ* are given in Annex 1. 
   The obtained optimal values of the dimensionless dif-
fusion time can be approximated as follows: 
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   For r > 0.85r0 the one-dimensional model (5) can be 
applied and a following simpler equation for optimal 
time relative values can be used: 
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   The optimal diffusion time relative values, approxi-
mated with (23) and (24) are given in fig. 5. 

 

Fig. 5 Optimal heat diffusion time versus ρ = r/r0 (dash line – the 
one dimensional model, + Table Annex 1 values) 

   The optimal heat diffusion time in seconds will be: 
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where t*opt is given in fig, 5 or by (23) and for r > 0.85r0 
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   The temperature and the temperature gradient on sepa-
ration surface at this time will be (18), (21) and (23): 
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Fig. 6 Average temperature in the separation layer θ/θ* at optimal 

time versus r/r0, τ* parameter 

For one-dimensional model these functions are (12) and 
(11): 
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The average temperature in the separation layer and its 
dimensionless gradient are given in Fig, 6 and 7 for sev-
eral values of thermal time constant 
 

 
Fig. 7 Maximal dimensionless temperature gradient on separation 

surface versus. r/r0, τ* parameter 

 

IV.  THERMAL TIME CONSTANT 
   Since the lateral cylindrical surface of the item is 
maintained at constant temperature, the heat losses will 
be considered only on the two plane sides.  The thermal 
time constant of such homogenous cylindrical item with 
the heat transfer coefficients α1 and α2 on the two plane 
sides and with out heat transfer on lateral surface will 
be: 
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where c, λ and γ are the specific heat, the thermal con-
ductivity and the density of the item material and h the 
axial length of the item. 
   The cooling effect of the shift with the constant radius 
r and the length l1 can be considered by replacing the 
heat transfer coefficient α1 with an equivalent one α1e. 
   If on the rod surface the heat transfer coefficient is α, 
taking into account the steady-state temperature varia-
tion along the rod (shaft), the equivalent heat transfer 
coefficient on the item surface occupied by the shaft 
cross-section results from the equation: 
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It results 
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The equivalent α1e coefficient will be: 

)( eq
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V. CONCLUSIONS 
1. When the temperature step is applied to the lat-

eral external surface of cylindrical item, a delay 
is necessary for temperature diffusion up to 
separation layer, up the instant when the tem-
perature gradient at internal surface of the item 
reaches its maximum (Fig. 4). 

2. This optimal heating time, which is independent 
on item thermal constant, for homogenous cyl-
inder is shown in Fig. 5 and can be evaluated by 
eq. (23) in relative units and (25) in seconds. For 
r > 0.85r0 the one dimensional model is more 
exact and the simpler eq. (24), (26) are recom-
mended. 

3. The maximum temperature gradient and corre-
sponding average temperature in the separation 
layer are shown in Fig. 7 and 6 for cylindrical 
model and Fig. 2 and eq. (9) (10) for one-
dimensional model. 
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ANNEX 1 
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Temperature distribution and temperature drop at optimal time 

 
 
 
 
 
 
 
 
 
 

ANNEX 2 
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⋅:= gradθ 4.053

K
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=

Avrage temperature in the separation layer
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∑
=

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦

⋅:= θ ρ t'opt, τ',( ) 148.587K=

θ 0 t'opt, τ',( ) 46.453K=

Temperature drop and dilaltation

Δθ δ
λ1

λ0
⋅ gradθ⋅:= Δθ 131.711K= Δr1 αd Δθ⋅ r1⋅:= Δr1 0.082mm=
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