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Abstract - The paper deals with the evaluation of the Root 
Mean Square (RMS) indices of signals with linearly variable 
magnitude by using Wavelet Packet Transform (WPT) and 
Fast Fourier Transform (FFT). Firstly there is presented a 
synthesis of employed techniques and previous results of the 
authors with respect to synthetically generated single-
harmonic signals. The signals had linearly decreas-
ing/increasing magnitude M. M varies according to a con-
stant slope G. The studied absolute difference between the 
final and initial values of M belongs to the set {2,5, 5, 7.5 and 
10}% from the initial M. Results of the RMS evaluation by 
using both FFT and WPT in a single harmonic approach 
are recalled, focusing on the maximum absolute values of 
percent relative errors. New studies are presented now, 
firstly considering randomly generated synthetic multi-
harmonic signals. Three cases are considered, correspond-
ing to harmonic orders belonging to 3 distinct ranges: 3...9, 
31...39 and respectively 3...40. The errors associated to the 
use of FFT and WPT are evaluated for them. Two real mul-
ti-harmonic signals are afterward analyzed. Small differ-
ences were noticed between the values yielded by FFT and 
WPT for the total RMS as compared to those computed 
with Riemann sums. The differences between the RMS 
yielded by FFT and WPT are also evaluated and discussed. 

Keywords: Wavelet packets, Fast Fourier Transforms, power 
quality, numerical simulation, convergence of numerical methods. 

I. INTRODUCTION 
For real-time applications, in (quasi)stationary regimes 

with smooth variation of parameters and an insignificant 
contribution of harmonics of high orders, a standard Fast 
Fourier Transform (FFT) analysis can provide data with 
an acceptable accuracy [1]. Interesting wavelet-based al-
gorithms for the harmonic analysis in power systems were 
proposed in [2]-[4]. 

Conventional Fourier based analyzing tools have some 
limitations concerning frequency and time resolutions. 
Although Wavelet Transforms (Discrete Wavelet Trans-
form - DWT and Wavelet Packet Transform - WPT) over-
come these limitations, they suffer from the problem of 
spectral leakage which is related to the choice of the 
wavelet family and the mother wavelet used in the analy-
sis. In order to minimize these errors, in [5] is presented to 
an approach to select the most suitable wavelet family and 
the most suitable mother wavelet to achieve accurate 
measurement of steady-state harmonic distortion using 
DWT. Because WPT is an extended version of DWT, the 

useful conclusions for our analysis, provided by [5], [6] 
are: in the case of low distortion levels the most suitable 
family is the ‘db’ (Daubechy) and the accuracy increases 
with increasing the wavelet order or the number of vanish-
ing moments. Wavelet Packet Transform (WPT) provides 
a uniform cover of the signal and thus its frequency reso-
lution is superior to that provided by DWT [7]. 

Our previous studies ([1], [6]) concerned with the accu-
racy of evaluating Power Quality (PQ) indices considered 
signals with constant magnitude over a sequence of peri-
ods. Special techniques must be used for the evaluation of 
PQ indices when the signals have linearly grow-
ing/decreasing magnitudes [8]. Different values are ob-
tained for the inherent errors (accompanying any numeri-
cal method). Their study is compulsory for all applica-
tions, because they are specific to every distinct opera-
tional context. For signals obtained as sinusoidal wave-
forms polluted by a single harmonic, an extended study 
was made in [8]. In this paper, this study is continued, 
such as to consider sinusoidal signals with linearly varia-
ble magnitudes, polluted by more harmonics. The final 
goal is to estimate the accuracy provided by our original 
algorithms when analyzing data acquired by our Data Ac-
quisition Systems (DAS) described in [9], which have 
been using to record and evaluate power quality indices 
for electrical waveforms acquired from power plants.  The 
mentioned DAS provide 197 samples per period (when 
providing simultaneously 8 waveforms), respectively of 
1576 samples per period for a single waveform. 

II. ALGORITHM RELATED FEATURES 
In order to improve the accuracy of analysis, spline in-

terpolations were made, generating NP equally spaced 
intervals within each interval defined by 2 adjacent sam-
ples.  NP is chosen in different ways, depending on the 
decomposition method and on the number of samples per 
period (SPP) respectively. When using FFT, NP was cho-
sen depending on SPP as follows: for SPP=197, NP=20 
and when SPP=1576, NP=3. 

In order to accomplish the WPT decomposition, two 
tree configurations were employed, relying on a Wavelet 
mother (WM) with a filter of length 40. The number of 
levels was 6 when SPP=197 and respectively 5 when 
SPP=1576. The number of calculation points (CP) is also 
variable in the WPT work frame, being computed with: 

                            dnfCP 2                                     (1) 
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where nf =4 (it represents the length of the vectors hosted 
by the tree’s terminal nodes) and d represents the tree’s 
depth (the number of levels). 

We also considered a numerical approximation of the 
total Root Mean Square (denoted by RMStn) which can be 
computed by using the samples, using a Riemann sum: 

         
T

TRMS dttfTf
0

2/1lim                       (2)   

     We used it under the form [10]: 

periodpersponcalculatioofnumber
TperiodafortvtvofcurvetheunderareaV ToverRMS int

  (3) 

In Eq. (3), v(t) is a vector obtained: (a) only from the 
acquired samples from a period, and in this case CP = 197 
when the smallest sampling rate is used; (b) as result of 
the interpolation over a period of the acquired signal (CP 
is equal to the number of all points, original plus those 
yielded by the interpolation).  

III. TECHNIQUES TO EVALUATE POWER QUALITY INDICES 
AND ERRORS ASSOCIATED TO ALGORITHMS 

A. Arithmetic averaged values for theoretic RMS values 
For our study concerned with sine waves polluted by 

harmonics, both the magnitudes of the sinusoidal signal 
(M) and respectively of the NH polluting harmonics (Hj, 
j=1...NH) have linear variations all over the sequence 
whose length is  Nper=10 periods. M was increased / de-
creased in a linear manner, along all periods. The differ-
ence between the initial and final value of M was defined 
in a percent relative manner (its absolute value belongs to 
the set of values {2.5%, 5%, 7.5%, 10%}). For a signal 
with a magnitude M increasing with 0.1, there is a correla-
tion between the initial and final values of M as follows: 
Mfinal - Minitial=Minitial  x 1.1. From this point on we will 
refer this percent increase as “gain” (G). 

From our point of view, a correct approach when deal-
ing with RMS values corresponding to the whole se-
quence should make use of the following “theoretical ref-
erence values”, defined with arithmetic averages [8]: 
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In the above formulas: Mi represents the magnitude of 
the pure sine wave (S) corresponding to its i-th syntheti-
cally generated sample;  Hi,j represents the magnitude of 
the j-th harmonic corresponding to its i-th synthetically 
generated sample and is raising with G. In Eqs. (4)...(7), 

“F” is used to denote “Fundamental”, “D” is used to de-
note “distorting”, “T” stands for “total” and “Transf” can 
be either FFT or WPT.  

B. Applying FFT and WPT in a linearly variable 
magnitude context 

When applying both FFT and WPT over the entire sig-
nals of Nper periods length, unacceptable errors were ob-
tained, mainly with respect to the value of the RMS corre-
sponding to distortions (RMSD). This made us apply both 
transforms in a “per-period” manner. That is, calculations 
were made for each period individually and finally the 
following values were computed as arithmetic averaged 
values over Nper periods [8] with X standing for F or D: 

        NperperRMSRMS
Nper

per
TransfXXTransf /

1

               (8) 

         TransfDTransfFTransfT RMSRMSRMS 22              (9) 

The compared quantities were: (a) the “node-zero” val-
ue yielded by WPT which was compared to the RMS cor-
responding to the fundamental frequency RMSF; (b) the 
“non-zero node“ value, which was compared to the RMSD 
and (c) the total RMS, denoted by RMST  . 

The definitions for these indices computed by using WPT 
are given in [11] and respectively those computed by using 
FFT are given in [12]. The counterpart definitions in the 
case when WPT is used consider the following rule: RMSF 
is calculated by using the energy of the leftmost node from 
the bottom level of the binary tree, whilst RMSD is using the 
energies of the rest of the nodes from the same level [6].   

We considered percent relative errors: 

                        100/ cct valvalvalerr                (10) 

where valt represents the theoretic values (yielded by Eqs. 
(4)...(7)) and valc represents the computed values (the 
counterpart of  valt , computed with the Eqs. (8), (9)). 

IV. PQ EVALUATION FOR SINGLE HARMONIC SIGNALS 
WITH LINEARLY VARIABLE MAGNITUDE  

   Simulations were performed with FFT and WPT for the 
slope defining the variation of M (G) following the rule: 
G=(index of test) * 2.5% , both for increasing and respec-
tively decreasing M, in a single harmonic context. Fig. 1 
[8], [13] provides graphical representations of the maxi-
mum absolute value of the percent relative error 
(MAVPRE) considering maximum 39 harmonics reaching 
at most 0.1 from the fundamental’s magnitude. The sym-
bol ‘+’ was used for the ascending slope whilst ‘o’ corre-
sponds to the descending one.  
      The highest absolute errors are associated to RMSD. 
They appear at small harmonic orders with small magni-
tudes (Fig. 2).  The following symbols were used: „M ” 
denotes “M raises”;  „M ” denotes “M falls”.   Table I 
depicts the mean values of the MAVPRE (averaged 
across all values of G.  This table reveals that the level of 
all MAVPREs is low, denoting that both methods provide 
appropriate results for practical applications. The values 
represented with italicized fonts are used to denote “bet-
ter accuracy” as compared to the other decomposition 
technique, for the same value of SPP. 
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Fig. 2. Minimum (top) and maximum (bottom) of relative percent errors 
when evaluating RMSD with FFT. SPP=197, G=10%, M falls. 

   TABLE I.                                                                                                                         
MEAN VALUES OF THE MAXIMUM ABSOLUTE VALUES OF THE PERCENT 

RELATIVE ERRORS 

PQ index 
 

mean value of 
MAVPRE 

SPP = 197 SPP = 1576 

FFT WPT FFT WPT 

RMSF M  0.0581 0.0489 0.0167 0.01 
M  0.0672 0.0573 0.0174 0.02 

RMSD M  3.8568 3.5436 3.3108 1.288 
M  3.6738 4.3108 3.2618 5.482 

RMST M  0.0604 0.0497 0.0253  0.0104 
M  0.0687 0.0586 0.0197 0.0116 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No systematic trend could be deduced from the quanti-

tative point of view. None of the methods can be declared 
superior to the other one from the MAVPRE point of 
view. With 2 exceptions, both yielded by FFT (RMSD 
computed when SPP=197 and RMST computed when 
SPP=1576), MAVPREs are higher for decreasing M as 
compared with the cases when M is raising. 

The use of more samples has advantages for both de-
composition techniques when computing RMSF and RMST 
(it reduces the associated MAVPREs by a factor of at least 
3). Yet, due to the sensibility of WPT analysis relative to 
phase differences, higher maximum absolute values for 
the percent relative errors were generated by WPT when 
more samples were used during the evaluation of RMSD, 
corresponding to certain particular phase differences. For 
the most critical case (G=10%), actually the mean value of 
the absolute values for the percent relative errors associat-
ed to RMSD was around 0, with a “peak” of 2% for the 
lowest harmonic orders with very small magnitude. 

V. STUDY OF ERRORS IN A MULTI-HARMONIC CONTEXT 
 Considering the results from Section IV, our attention 

was afterward focused on 3 test signals spanning over 10 
periods, obtained synthetically by superposing over a per-
fect sinusoid (with the magnitude M =10), sets of 4 har-
monics with randomly generated magnitudes (correlated 
to M) and respectively with randomly generated phase 
differences, as depicted by Table II. 

The ranges of harmonic orders were chosen such as to 
cover all areas of interest: the 1-st signal is polluted only 
by low odd harmonic orders (3, 5, 7 and 9), the 2-nd sig-
nal is polluted only by high odd harmonic orders (33, 35, 
37 and 39), whilst the 3rd signal is polluted with harmonic 
orders from all the range of interest from the European 
standard point of view (3, 13, 27 and 39). Similar to our 
previous studies from Section IV, M and the harmonics’ 
magnitudes were increased/decreased in a linear manner, 
along all 10 periods, considering a gain G calculated with: 
G=(index of test) * 2.5% , both for increasing and respec-
tively decreasing magnitudes. 

    
(a) (b) (c) (d) 

Fig. 1. Maximum absolute values of the percent relative error : (a) , (b) : when using FFT, SPP=197, respectively SPP=1576. (c), (d) : when using WPT, 
SPP=197, respectively SPP=1576.  
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Figs. 3 and 4 depict the percent relative errors associat-
ed to the use of FFT, respectively WPT. The left column 
corresponds to positive values of G and the right column 
is dedicated to the negative ones. The symbol ‘+’ depicts 
the results for SPP=197 whilst ‘o’ is used for SPP=1576. 
   Table III depicts the mean values of the absolute per-
cent relative errors, averaged across all values of G.    
Similar to the single-harmonic case, for the multi-
harmonic pollution the greatest errors are associated the 
evaluation of RMSD. Another similarity is related to the 
“descending over ascending slope” comparison. In all 
cases, higher errors were recorded for the descending 
slope, irrespective to the method used for analysis. 
   Usually WPT provides slightly lower errors (see the 
italicized fonts). In only 8 out of 72 cases (see the bolded 
fonts), the FFT yielded slightly smaller errors. All of 
them are associated to RMSd.  

The magnitudes of errors in all cases are very low, 
highly acceptable for industrial applications. Moreover, 
they did not exceed the maximal values evaluated during 
the single-harmonic study. 

VI. STUDY ON REAL DATA 
The next step was to perform analysis over real data, 

acquired from a test stand. Data correspond to a driving 
system using a chopper and a DC motor. The 1st set of 
real data corresponds to unfiltered currents (Fig. 5). The 
2nd set of real data (Fig. 6) contains currents with reduced 
harmonic content, but with a “zig-zag” variation of magni-
tudes (alternately fallings/risings of signal’s magnitude). 
The sampling frequency was 19200 Hz.   
   For a global picture, data were also analyzed consider-
ing the reversed order, the final goal being to address both 
the  “ascending”  specific  and  respectively  “descending 

   
(a) (b) (c) 

Fig. 3. Percent relative errors yielded by the FFT analysis. (a) – low harmonic orders; (b) high harmonic orders; (c) mixed harmonic orders.  
 

   
(a) (b) (c) 

Fig. 4. Percent relative errors yielded by the WPT analysis. (a) – low harmonic orders; (b) high harmonic orders; (c) mixed harmonic orders.  

 
 

TABLE II.                                                                                                                                                             
CHARACTERISTIC FEATURES OF THE SYNTHETIC WAVEFORMS  USED FOR TESTS -  MULTI-HARMONIC CASES 

Synthetic 
waveform 

index 

Harmonic orders Harmonic magnitudes [% from the magni-
tude of the pure sine wave] Phase differences of harmonics [rad.] 

1-st  2-nd  3-rd  4-th  1-st. 2-nd. 3-rd  4-th 1-st  2-nd 3-rd 4-th  
1 3 5 7 9 13 3.5 2.8 0.7 -2.2 -1.56 2.14 -1.54 
2 33 35 37 39 7.7 0.63 0.09 0.8 0.24 3.12 -2.65 -0.36 
3 3 13 27 39 4.9 0.49 0.35 0.02 0.19 1.75 2.73 -2.32 
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TABLE III.                                                                                                                        
MEAN VALUES OF PERCENT RELATIVE ERRORS (ABSOLUTE VALUES) 

 

PQ index 
mean value of 

MAVPRE 

SPP = 197 SPP = 1576 

FFT WPT FFT WPT 

Lo
w

 h
ar

m
on

ic
 

or
de

rs
 

RMSF M  0.0495 0.0425 0.0090 0.0013 
M  0.0696 0.0627 0.0180 0.0079 

RMSD M  0.0399 0.0684 0.0369 0.0295 
M  0.2106 0.1151 0.1663 0.1834 

RMST 
M  0.0487 0.0380 0.0077 0.0022 
M  0.0754 0.0648 0.0240 0.0151 

H
ig

h 
ha

rm
on

ic
 

or
de

rs
 

RMSF M  0.0549 0.0448 0.0141 0.0057 
M  0.0676 0.0575 0.0157 0.0073 

RMSD M  0.1764 0.1911 0.0330 0.0233 
M  0.1964 0.2099 0.0043 0.0055 

RMST 
M  0.0526 0.0425 0.0142 0.0059 
M  0.0650 0.0549 0.0156 0.0072 

M
ix

ed
 h

ar
m

o-
ni

c 
or

de
rs

 RMSF M  0.0570 0.0429 0.0159 0.0057 
M  0.0687 0.0547 0.0165 0.0055 

RMSD M  0.0241 0.3206 0.0553 0.0233 
M  0.1149 0.2294 0.1487 0.0073 

RMST 
M  0.0562 0.0457 0.0152 0.0059 
M  0.0668 0.0565 0.0148 0.0072        

 
specific features. 

 An interesting aspect is related to the invariance of re-
sults yielded by FFT with respect to the sense of variation 
(identical values were obtained at magnitude’s raising and 
falling respectively). Small differences were instead re-
vealed in particular cases by the WPT analysis. 

Tables IV and V gather the results of the joint analysis. 
The differences between the results yielded by different 
methods (FFT, WPT and Riemann sum) are evaluated in a 
percent relative manner. For example the difference “FFT 
vs WPT” is given by: 

        100/ FFTWPTFFT valuevaluevalue                (11) 

    For the 1-st set of real data, all methods provide al-
most identical values for all types of RMS. Because the 
method relying on Riemann sums provides the most accu-
rate value for RMST when considering the theoretical ap-
proach, one can deduce that the phenomenon of “spectral 
leakages” is faced by both FFT and WPT methods. Fortu-
nately the errors associated to it are very small. 

  For the 2-nd set of real data, WPT is less affected by 
the spectral leakage phenomena. On the other hand, an 
over-evaluation of RMST can be noticed when FFT is 
used, but for both methods the errors are lower than those  

 
  Fig. 5. Phase current from the 1-st set of real data. 

 
Fig. 6. Phase current from the 2-nd set of real data. 

associated to the 1-st set of data. 
The opposite signs of errors associated to RMST are in 

correlation with the significant percent relative differences 
noticed between the values of RMSD yielded by FFT and 
WPT, mainly for the current flowing through the 1-st 
phase. The explanation for them might rely on 2 reasons: 
- both FFT and WPT can yield positive, respectively nega-
tive errors when evaluating RMSD which are higher for low 
harmonic orders with low harmonic magnitudes. They do 
not occur at the same phase difference and therefore the ef-
fects can add, providing differences for counterpart values; 
- FFT is more affected by the non-symmetry between the 
1-st and 2-nd half-period of the same period and this kind 
of non-symmetries are frequently noticed in the wave-
forms from the 2-nd set of data. 
    Yet, considering the small absolute values of the dis-
torting residues these differences should not be a concern 
with respect to the accuracy provided by both methods.  

VII. CONCLUSIONS  
When dealing with harmonically polluted signals in the 

context of variable magnitudes, test signals must be gen-
erated synthetically such as to simulate as accurate as pos-
sible the real signals for which the PQ analysis will be 
performed by using algorithms with clear specifications 
relative to the internal data structures and sampling ratios. 
By varying in a systematic manner the harmonic orders 
and magnitudes, the phase differences and the value of the 
slope associated to the magnitude variation it is possible to 
estimate the level of maximum absolute values of the per-
cent relative errors (MAVPRE) associated to the evalua-
tion of the most important RMSs.  

In a single harmonic work frame, the representations of 
MAVPRE revealed interesting aspects: 
- none of the methods can be declared superior to the other 
one from the MAVPRE point of view; 
- the level of all MAVPREs is low; 
- usually MAVPREs are higher for decreasing M ; 
- unlike the case when M raises, when M falls the behavior 
of MAVPREs is more predictable; 
- the 3D representations revealed that the most significant 
errors appear when evaluating RMSD; 
- a better sampling ratio is always beneficial from the 
point of view of evaluating with better accuracy RMSF and 
RMST. For certain combinations of phase differences it 
can instead result into higher MAVPREs associated to 
RMSD, mainly when WPT is used.  
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    The tests on randomly generated multi-harmonic pollu-
tions revealed that: 
- the greatest errors are associated to RMSD; 
- another similarity to the single harmonic cases is related 
to the “descending over ascending slope” comparison. In 
all cases, higher absolute errors were recorded for the 
descending slope, irrespective to the method ; 
- usually WPT provides slightly lower errors. All excep-
tions are associated to RMSd; 
-   the magnitudes of errors in all cases are very low, 
highly acceptable for industrial applications. Moreover, 
they did not exceed the maximal values evaluated during 
the single-harmonic study. 

For the 1-st set of real data, all methods provide almost 
identical values for all types of RMS. The phenomenon of 
“spectral leakages” is faced by both FFT and WPT meth-
ods. Fortunately the errors associated to it are very small.    

For the 2-nd set of real data, WPT is less affected by the 
spectral leakage phenomena. On the other hand, an over- 
evaluation of RMST can be noticed when FFT is used, but 
for both methods the errors are lower than those associat-
ed to the 1-st set of data. The opposite signs of errors as-
sociated to RMST are in correlation with the significant 
percent relative differences noticed between the values of 
RMSD yielded by FFT and respectively WPT, mainly for 
the current flowing through the 1-st phase. 

  A final conclusion is relative to the good practice of 
applying any of the analyzed transform in a per-period 
manner and performing arithmetic averages.   
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TABLE  IV.                                                                                                                                                             
VALUES YIELDED BY FFT AND WPT ANALYSIS AND PERCENT RELATIVE DIFFERENCES FOR THE FIRST SET OF REAL DATA 

 

 
Current 

 
PQ 

index 

RMSD RMSF RMST 

FFT 
[A] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

FFT 
[A] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

Riemann 
[A] 

FFT 
[A] 

FFT 
vs R 
[%] 

 

DWT  
[A] 

DWT  
vs R 
[%] 

DWT  
[A] 

DWT  
vs R 
[%] 

I1 26.97 26.95 0.07 26.96 0.04 32.86 32.81 0.15 32.82 0.12 42.89 42.51 0.89 42.46 1.00 42.47 0.98 
I2 27.69 27.67 0.07 27.67 0.07 34 33.97 0.09 33.97 0.09 44.26 43.86 0.90 43.81 1.02 43.81 1.02 
I3 27.00 26.99 0.04 26.99 0.04 32.96 32.96 0.00 32.96 0.00 43.04 42.61 1.00 42.60 1.02 42.60 1.02 

 

TABLE  V.                                                                                                                                                              
VALUES YIELDED BY FFT AND WPT ANALYSIS AND PERCENT RELATIVE DIFFERENCES FOR THE SECOND SET OF REAL DATA 

Current 
 
PQ 

index 

RMSD RMSF RMST 

FFT 
[A] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

FFT 
[A] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

DWT  
[A] 

FFT vs 
DWT  

[%] 

Riemann 
[A] 

FFT 
[A] 

FFT 
vs R 
[%] 

 

DWT  
[A] 

DWT  
vs R 
[%] 

DWT  
[A] 

DWT  
vs R 
[%] 

I1 4.55 3.86 15.16 3.74 17.80 69.44 69.4 0.06 69.4 0.06 69.52 69.58 -0.09 69.51 0.01 69.51 0.01 
I2 4.29 4.17 2.80 3.8 11.42 70.99 70.95 0.06 70.98 0.01 71.09 71.12 -0.04 71.08 0.01 71.08 0.01 
I3 4.89 4.39 10.22 4.73 3.27 69.27 69.27 0.00 69.25 0.03 69.42 69.44 -0.03 69.41 0.01 69.41 0.01 
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