Hybrid Systems Modeling Approach with Petri Nets

Mircea – Adrian Drighiciu

University of Craiova, Faculty of Electrical Engineering, Craiova, Romania adrighiciu@em.ucv.ro

Abstract - The purpose of this paper is to present the achievement of the Hybrid Petri Nets techniques used for modeling and behavioral analysis of a class of hybrid systems. In our sense, a dynamic hybrid system contains at least two distinct subsystems which interact: a continuous subsystem (linear, or not) and a discrete subsystem with a finite number of states. In this context, after a brief introduction to the basic elements of Hybrid Petri Nets modeling, two hybrid systems, consisting of liquid level control of one and two interconnected tanks were analyzed in different specific scenarios. The analysis starts with the synthesis of a Hybrid Petri Net model for each system, followed by their refinement and validation by simulation of their behavioral properties, in order to achieve and implement a command - control structure (the sequential controller) of the process. For the models synthesis and for their validation. Modified Hybrid Petri Nets were used. Such structure is a extinction of the classical topology of a generalized Hybrid Petri Nets model, achieved by assignation to every continuous transition a firing speed as a algebraic relation whose variables depend of different marking of continuous places, arbitrary or not. The synthesis of the models and their validation was obtained using Visual Object Net++ tool.

Cuvinte cheie: *sisteme hibride, Rețele Petri, modelare, simulare.*

Keywords: hybrid systems; Petri Nets; modeling; simulation.

I. INTRODUCTION

A dynamic hybrid system contains at least two distinct subsystems which interact: a continuous subsystem (linear, or not) and a discrete subsystem with a finite number of states. These interactions may lead to the emergence of specific peculiarities in the dynamics of the entire system, especially if the state transition mechanism is based on sequences of external asynchronous events. Thus, switching states can be determined by occurrence a certain type of event and not by an internal time clock, even if time - as an independent variable - appears explicitly in the pattern of the model. For the synthesis of the whole model and then for its quantitative analysis, it is necessary to manipulate specific tools combining - within the same formalism - some elements of classical representations from the theory of continuous systems with others elements specific to the modeling of discrete event drive systems. Such formalism is the one developed around the Petri Nets. Most precisely, it is a particular class of Hybrid Petri Nets, which allows the synthesis of models that incorporate the dynamics of the entire system (process) analyzed, although the paradigms used in the representation of its component subsystems (continuous or discrete) may be different [1], [2], [3], [7], [23], [24], [27], [28].

II. REVIEW ON HYBRID PETRI NETS

In a discrete Petri Net, the marking of a place may correspond either to the Boolean state of a device (e.g., a supply valve is turned on or off), or to an integer state (e.g., number of parts in a conveyor input buffer). For this type of model, a general analysis method is to compute the set of reachable states and afterwards deduce the different - good or inadequate - properties of the analyzed system. But when a Petri Net marking contains a large number of tokens, the number of reachable states explodes and the method becomes difficult to be applied. This observation allowed researchers community to define and utilize continuous and hybrid Petri Nets in model synthesis [5], [6], [7], [11], [17], [18], [19], [20], [21], [22], [25], [26].

According to this formalism, an Hybrid Petri Net (HPN) is a sextuple HPN = {P, T, Pre, Post, \mathbf{m}_0 , h} such that: P = {P₁, P₂, ..., P_n} is a finite, not empty, set of places; T = {T₁, T₂, ..., T_m} is a finite, not empty, set of transitions; P \cap T = \emptyset (P and T are disjointed); h, called "hybrid function" indicates for every node whether it is a discrete or a continuous node; Pre : P x T \rightarrow \mathbf{R}^+ or \mathbf{N}^+ , is the input incidence mapping; Post : P x T \rightarrow \mathbf{R}^+ or \mathbf{N}^+ - the output incidence mapping and \mathbf{m}_0 : P \rightarrow \mathbf{R}^+ or \mathbf{N}^+ is the initial marking corresponding to the initial state (Fig.1). Therefore are two parts in a HPN: a discrete part and one continuous, interconnected by means of arcs which links a discrete node (place or transition) to a continuous node (transition or place) [8], [9], [10], [12], [13], [14].

Fig.1. A Hybrid Petri Net structure.

A powerful extinction of the classical structures of HPN consist by the assignation to every continuous transition a firing speed as a function whose variables depending of different marking of continuous places, arbitrary or not [8], [9], [10], [11]. The result was named Modified Hybrid Petri Net (MHPN). Using of continuous functions associated with the execution speeds of the transitions has

considerably increased the modeling power of the continuous Petri Nets, the new models possessing a higher abstraction level within a simplified topology, increased modularity and thus a possibility of immediate integration into complex structures, with multiple interactions between subnets of the same category or not. In this way it was possible to translate the mathematical models into an evolved graphic language, proper to the Hybrid Petri Nets formalism, and analyze them with appropriate tools.

In Fig.2, the firing speed of T_1 is represented as a function depending on all making of the model. The transition T_1 is always active, due to the test arc $P_1 - T_1$ (dotted line represented) which does not allow token flow; it can be inactivated only by the empty discrete input places. Hence, using such topology it's easy to achieve various primary subsystems without feedback models: in the dynamics of the model the token quantity of P_1 is not influenced [8], [9], [10].

 $\begin{array}{l} m_{1}(t),\,m_{2}(t) \;-\; quantity\; of\; tokens\; in\; P_{1},\,P_{2}\\ m_{i}(t),\,m_{\;i\;+1}(t)\;-\; quantity\; of\; tokens\; in\; P_{i},\,P_{\;i\;+1}\\ \nu\;\;-\; firing\; speed\; of\; continuous\; transition\; T_{1} \end{array}$

Fig. 2. Modified Hybrid Petri Net with test arcs.

For the above HPN, according to the semantics of a continuous Petri Net, the firing speed associated to T_1 continuous transition depends on the markings m_1 and m_2 : $v_{T1} = -dm_1/dt = dm_2/dt$

In order to check all of goods properties of the models, algebraic techniques can be used in addition with software tools [4], [5], [6], [15], [16].

III. CASE STUDY

A. Case of one single tank

Let us consider an open cylindrical tank of inside circular section *S* containing liquid (Fig.3). The tank is provided with a ON/OFF elecro-valve V_1 which allows the supply with a constant flow of liquid $-q_1$. The tank is emptied through a s_c section pipe provided with a ON/OFF elecro-valve V_2 . The liquid level in the tank -h – may rise or fall between the two limits - h_{min} and h_{max} – according to the state of the two valves V_1 and V_2 and also depending to the inlet and outlet flow values.

Fig.3. Explanatory to the filling / emptying process.

It is obvious that the variation of the level can be done either commanding V_1 (when V_2 is always open), either commanding V_2 (when V_1 is always open) or by controlling both values.

Fig. 4 shows the model of this system controlled by both valves, made with HPN, whose elements have the meaning shown in Table I. Obviously, the initial marking of the model correspond to the initial state of the system: V_1 is opened, V_2 is closed and the initial value of the liquid in the tank is shown in the place P_1 .

Fig.4. Hybrid Petri Net model of the filling / emptying process.

From the initial state, the level increases and at $h = h_{max}$ the states of the two valves changes: V₁ is turned off and V₂ is turned on. Indeed, the test arc P₁ – T₃, whose weight is h_{max} validates the firing of discrete transition T₃, which modifies the marking of P₂ and P₃: m(P₂) = 0 and m(P₃) = 1. Due of null marking of P₂ place, the inhibitor arc P₂ – T₆ allows to T₆ to be fired (turn on V₂) and, as a result m(P₄) = 1 and m(P₅) = 0. T₂ is now fireable due to the marking of P₄ being fired with a variable speed, depending on the variable output flow q_2 and so on.

The firing speeds v_{T1} and v_{T2} , associated to the T_1 and T_2 continuous transitions are obtained from the flow balance equation, according to the rules of the type of HPN model used [5], [6], [9]:

$$q_1 - q_2 = \frac{\mathrm{dV}}{\mathrm{dt}} = S\frac{\mathrm{d}h}{\mathrm{dt}} \tag{1}$$

where V is the tank volume and h its liquid level.

It results $v_{T_1} = q_1/S$ and $v_{T_2} = q_2/S$.

The output flow can be expressed as: $q_2 = s_c \cdot v_2$. Here s_c is the flow section of the tank outlet which depends on the diameter d_c of the external pipe and v_2 is the instantaneous flow rate of the liquid.

In our case:

$$v_2 \cong \sqrt{2gh}$$
 (2)

with: g – gravity acceleration and h – the level of liquid in the tank. Because the value of the *S*-section is generally much higher than the s_c , we will consider, without further specifications or restrictions, that in the formulas of the above type we can use the equal sign instead of the approximation.

Therefore
$$q_2 = s_c \cdot \sqrt{2gh} = k\sqrt{h}$$
, with $k = s_c\sqrt{2g}$

When the level is $h = h_{\min}$, V_1 will be turned on and V_2 will be closed. Hence, in the model T_4 and T_5 will be fireables.

TABLE.I THE MEANING OF THE HPN ELEMENTS

Element of the HPN	Meaning
Pı	Liquid level in the tank; in the initial state the marking of this place correspond to the value of the initial level;
P ₂ , P ₃	Places whose marking indicates the state of the V_1 value: $m(P_2) = 1 - V_1$ is turned on, $m(P_3) = 1 - V_1$ is turned off. Always $m(P_2) + m(P_3) = 1$;
P ₄ , P ₅	Places whose marking indicates the state of the V_2 valve: $m(P_4) = 1 - V_2$ is turned off, $m(P_5) = 1 - V_2$ is turned on. Always $m(P_4) + m(P_5) = 1$;
Tı	Transition whose firing speed is a function, depending on the input flow rate q_1 , assumed constantly;
T ₂	Transition whose firing speed is a function depending on the output flow q_2 ;
T ₃ , T ₅	Turn off V ₁ and V ₂ respectively;

 T_4 , T_6 Turn on V_1 and V_2 respectively;

For the synthesis and for the validation of the model in various simulation scenarios, starting from different initial states, Visual Object Net++ tool was used (Fig.5) [9], [10], [11].

Fig.5. Main view of the Visual Object Net++ tool.

Fig. 6 shows the Hybrid Petri Net model in the initial state and the evolution of the level obtained after simulation, considering an initial value of level in the tank $h_{\rm in} = 0,1$ m, D = 0,3 m, $q_1 = 10$ l/min, d_c = 0,01 m, $h_{\rm min} = 0,05$ m and $h_{\rm max} = 0,4$ m.

B. Two interconnected tanks

Two interconnected tanks plant are considered (Fig. 7). In the initial state, all the three ON/OFF electro-vanes V_1 , V_2 and V_3 are closed and the two tanks are empty.

Fig.6. Explanatory at the validation of the model: a) Quantitative model of the process; b) Evolution of the level in a first scenario, obtained by simulation with Visual Object Net++ tool.

Fig.7. Two interconnected tanks plant.

A nonlinear and hybrid mathematical model was considered for describing the two tank system:

$$\frac{dh_1}{dt} = \frac{1}{s_1} \left(k_1 \cdot q_1 - k_2 \cdot q_{12} \right) \tag{3}$$

$$\frac{dh_2}{dt} = \frac{1}{s_2} \left(k_3 \cdot q_{12} - k_3 \cdot q_2 \right)$$
(4)

where h_1 and h_2 are liquid levels in R_1 and R_2 respectively, S_1 and S_2 - the values of the R_1 , respectively R_2 inside areas, q_1 , q_{12} and q_2 - the flows (Fig.7) and k_i , $i = \overline{1,3}$ a discrete variable, corresponding to the ON/OFF state of the V_i , $i = \overline{1,3}$ electro-values. To achieve this scenario, starting from the initial state, the controller must assure the following sequences: turn on V₁, then, after t_1 time units since the valve V₁ was opened the V₂ is also turned on. After t_2 time units from V₂'s opening, the V₃ vane is also turned on. If the liquid level in R₂ dropped till $h_{2\min}$ amount, V₃ must be turned off while V₂ will remain turned on. If the liquid level in R₂ rises till $h_{2\max}$ amount, V₂ vane must be turned off while V₃ will remains turned on.

During this time period, V_1 remains open, filling the tank R_1 . If the liquid level in R_1 raises and reaches the maximum amount, h_{1max} , the V_1 vane will be turned off until tank R_1 empties completely ($h_1 = h_{1min}$). At this point, both V_2 and V_3 vanes are automatically turned off regardless of their state. The process is then restarted in the same succession of sequences at a new START command.

The Hybrid Petri Net model of this process is shown in Fig. 8.

Fig.8. The Hybrid Petri Net model of the process, according to the aforementioned sequences.

The meaning of the elements presented in the HPN model is as shown in Table II.

TABLE.II THE MEANING OF THE HPN ELEMENTS

Element of the HPN	Meaning
P ₁ , P ₂	The liquid level in tank R_1 and R_2 respectively; in the initial state the marking of these places correspond to the initial values of their liquid levels;

 $\begin{array}{ll} P_3,\,P_5,\,P_7 & \mbox{Places whose marking indicates the opened state of the V_1,}\\ V_2 \mbox{ and V_3 respectively valves: } & m(P_3)=1-V_1 \mbox{ is turned }\\ \mbox{ on, } m(P_5)=1-V_2 \mbox{ is turned on and } m(P_7)=1-V_3 \mbox{ is turned }\\ \mbox{ on; } \end{array}$

$\mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{C}} \mathbf{P}_{0}$	Places whose marking indicates the closed state of the V_1 ,
14, 16, 18	V_2 and V_3 respectively values: $m(P_4) = 1 - V_1$ is turned
	off, $m(P_6) = 1 - V_2$ is turned off and $m(P_8) = 1 - V_3$ is
	turned off:

P_9	Place which authorizes the firing of T_8 after t_2 time units
	from V ₂ 's turning on;

- P_{10} , P_{12} Places which, by the way of connecting with T_6 and T_8 transitions respectively, authorizes their executions one time only, after t_1 respectively t_2 units of time starting from the initial state;
- P₁₁ Place whose non-null marking validates the firing of T_{10} (turning on V₂) when the liquid level in R₂ reached the minimum amount h_{2min} ;
- P₁₃ Place whose non-null marking allows the firing of T_{11} (V₃ vane's turning on) when the liquid level in R₂ reached the maximum amount h_{2max} ;
- P_{14} Place which allows the V₁ vane opening command (START command);
- P_{15} Place whose non-null marking validates the firing of T_2 and T_3 after the level in the tank R_1 has fallen to the minimum value h_{1min} , until the tank R_2 is completely emptied;
- T_1 Continuous transition, whose firing speed v_1 depends on the value (assumed constant) of the supply flow rate;
- T_2 Continuous transition whose variable firing speed v_2 is represented as a function depending on the feed rate of the second tank R_2 ;
- T_3 Continuous transition, whose variable firing speed v_3 depends on the output flow rate;
- T_4 Turn on the V₁ vane after a START command;
- T_5 Turning off of V₁ vane when the liquid level in R₁ reached the maximum amount h_{1max} ;
- T_6, T_8 Temporized opening of V₂ and V₃ vane respectively;
- T_7, T_9 Turning off of V₂ and V3 vane respectively;
- T_{10} Turning on of V₂ vane when the liquid level from R₂ tank reached minimum amount h_{2min} ;
- T_{11} Turning on of V₃ vane when the liquid level from R₂ tank reached maximum amount h_{2max} ;
- T_{12} A target transition which, through its execution, cancels P_{15} place marking and authorizes the incidental commands to turn off the V₂ and V₃ vanes when the liquid level from R₁ reached minimum amount h_{1min} ;
- T_{13}, T_{14} The incidental command to turn off the V₂ and V₃ vanes when the liquid level from R₁ reached minimum amount h_{1min} ;

As in the first case we have analyzed, the continuous transitions T_1 , T_2 and T_3 have different firing speeds which depend on the continuous places' markings P_1 and P_2 and show the amount of the liquids' flow rate from

both tanks. Therefore, starting from (3) and (4) results: $v_{T_1} = \frac{q_1}{s_1}$, $v_{T_2} = \frac{q_{12}}{s_1} = \frac{k_{f_1} \cdot \sqrt{h_1}}{s_1}$ and $v_{T_3} = \frac{q_2}{s_2} = \frac{k_{f_2} \cdot \sqrt{h_2}}{s_2}$, where: V₁ and V₂ are the volumes of the two tanks, S₁ and S₂ - the values of the R₁, respectively R₂ inside areas, h_1 , h_2 - liquid level in each of the two tank and k_{f_1} , i = 1, 2 two flow coefficients, each having its own expression:

$$k_{fi} = s_{ci}\sqrt{2g}$$
 $i = 1, 2$ (5)

In (5), s_{ci} are the sections of drainage holes from R_1 and R_2 respectively tanks and g is gravitational acceleration.

The dynamic of the model is determined by the fired rules of the HPN transitions, as well as its initial marking: in the initial state the three valves are turned off. The mark from P₁₄ authorizes the execution of T₄ transition to which the 'turn on V1 valve' event is associated to. After its opening (the mark in P_3) the R_1 tank is supplied with the flow rate q_1 of constant value. The test arc P_3 - T_1 authorizes the firing of the continuous transition T_1 with the speed v_{T1} . After t_1 time units from V₁'s turning on, the T_6 transition is fired (valve V₂ opens). After other t_2 time units from V_2 's opening, the V_3 valve also turns on (T_8) transition is fired). By firing both T_6 and T_8 transitions, the new place marking for P_{10} and P_{12} leads to the subsequent disable of T₆ and T₈ transitions. Moreover, the new marking, associated with P₅ and P₇ places, authorizes the continuous firing of T_2 and T_3 transitions with the speeds v_{T2} and v_{T3} . R_1 and R_2 tanks are filled with liquid and the three electro-vanes are opened. If the liquid level from R_2 drops beneath the $h_{2\min}$ ($h_2 \leq h_{2\min}$) value, the inhibitor arc P_2 - T_1 , of weight equal to $h_{2\min}$ (Fig.8), validates the T_9 transition to which the 'turn off V_3 vane' event is associated to. The marking of P₈ becomes $m(P_8) = 1$ and T_3 transition is disabled (P_7 is not marked anymore). When $h_2 = h_{2\text{max}}$, the test arc P_2 - P_{11} validates T_{11} transition and determines the V_3 vane's commutation state $(m(P_7) = 1$ and $m(P_8) = 0)$. The test arc P_2 - P_7 authorizes, in turn, the T₇ transition firing (the V₂ vane is closing).

Next, the control of the h_2 liquid level between the limits $h_{2\min}$ - $h_{2\max}$ is assured through the periodical commutation of V₃ and V₂ vanes states: to $h_2 = h_{2\min}$ V₃-turned off, V₂-turned on and for $h_2 = h_{2\max}$, V₃- is turned off.

During this time period, R_1 tank is filling with liquid while V_1 vane is turned on. When $h_I=h_{1max}$, T_5 transition will be fired (V_1 vane will be turned off), the P_3 place marking will disable the ulterior fire up of T_1 continuous transition. From this point on, the liquid level from R_1 starts to drop. When $h_1=h_{1min}$, the inhibitor arc P_1 - T_{12} will allow the firing of T_{12} final transition. Therefore, the null marking of P_{16} place will disable the firing of T_2 and T_3 transition but will authorize the firing T_{13} and T_{14} transitions (V_2 and V_3 vanes are also closed). At a new START command (by placing a new mark in P_{14}) the process will continue in the same manner with the one described above.

The synthesis of the HPN model was done using the Visual Object Net ++ tool [9], [10], [11] and its

validation resulted after various simulation scenarios. For example, Fig.9 shows a series of results obtained for different initial conditions, considering the diameters of the two tanks $D_1 = 0,3$ m and $D_2 = 0, 2$ m, $q_1 = 10$ l/min., the diameter of connection pipe $d_{c1} = 1$ cm, the diameter of the outlet pipe $d_{c2} = 0,005$ m, $h_{1max} = 0,6$ m, $h_{2max} = 0,3$ m, $h_{2min} = 0,2$ m, $t_1 = 10$ s, $t_2 = 15$ s.

Fig.9. Liquid level variation in the two tanks obtained during simulation of the model in Visual Object Net++ tool: a) $h_{\text{lin}} = 0,1 \text{ m}$ and $h_{2\text{in}} = 0,15 \text{ m}$; b) $h_{1\text{in}} = h_{2\text{in}} = 0 \text{ m}$.

Fig. 9.a shows the liquid level variation in the two tanks for $h_{1in} = 0.1$ m and $h_{2in} = 0.15$ m, and Fig. 9.b

shows the same variations considering that the two tanks are completely empties ($h_{1in} = 0$ m, $h_{2in} = 0$ m).

Another possibility to interconnect the two tanks is the one presented in Fig. 10. In this case, between the two tanks there is a level variation, R_2 's supplying pipe being situated at *H* height from its base.

Fig. 10. Explanatory to another case of interconnection of the two tanks.

And in this case also, the mathematical model of the process is a hybrid one, similar with the one described through equations (3) and (4). The difference between this one and the previous one stands in the flow's expression q_{12} , with which tank R_2 is supplied (Fig. 10).

$$q_{12} = \begin{cases} s_{c1}\sqrt{2g}\sqrt{h_1 - (h_2 - H)} \text{ pentru } h_2 > H \\ s_{c1}\sqrt{2g}\sqrt{h_1} \text{ pentru } h_2 \le H \end{cases}, (6)$$

where s_{c1} is the flowing section through the linking pipe, with diameter d_{c1} , between tanks R_1 and R_2 . For the flowing rates q_1 and q_2 the following relations have been kept: $q_1 = \text{const.}, q_2 = s_{c2}\sqrt{2g}\sqrt{h_2}$.

The HPN process' model is shown in Fig.11. In this case, the Petri net topology has two continuous transitions

for the flowing rate of V_2 valve, according to relation (6): $T_{2,1}$ and $T_{2,2}$.

Their firing speeds are as follows: $v_{T2,1} = q_{12}/S_1$, where q_{12} is given by (6) for $h_2 \leq H$ and $v_{T2,2} = q_{12}/S_1$, with the value of q_{12} obtained for $h_2 > H$.

The meaning of the HPN model's elements from Fig.11 it's, mostly similar to the one described in TABLE II. To illustrate the model dynamics, the same working scenario has been kept, the one that led to the corresponding firing sequences from Fig.8. Hence, from the initial state, V_1 valve is turned on, then, after t_1 time units from V_1 's opening, the V_2 vane will be is opened too. After t_2 time units from V_2 's opening, the V_3 valve also turns on. Both R1 and R2 tanks are filled with liquid and the three electro-valves are opened. If the liquid level from R_2 drops beneath the h_{2min} value, V_3 will be closed. The level in \mathbf{R}_2 tank increases and at $h_2 = h_{2\text{max}}$, the state of V_3 valve changes again (V_3 is turned on). Hence, the control of the h_2 liquid level between the limits $h_{2\min}$ $h_{2\text{max}}$ is assured through the periodical commutation of V₃ and V₂ vanes states: to $h_2 = h_{2\min}$ V₃-turns off, V₂-turns on and for $h_2 = h_{2\max}$, V₃- will be turned on, while V₂- will be turned off.

During this time period, R_1 tank is filled with liquid while V_1 vane is turned on. When $h_1=h_{1max}$, V_1 vane commutes and from this point on, the level in R_1 starts to drop. When $h_1=h_{1min}$, V_2 and V_3 valves will be also turned off and so on.

As in the above cases, to synthesize the model, the Visual Object Net ++ tool has been used, validation of the model and the analysis of its good behavioral properties being done by simulation, in various initial conditions and in various scenarios, assuming that the process proceeds without failures.

Starting from the above model, Fig.12 a. and b. shows the results achieved by simulation of the HPN model in Visual Object Net++, considering the diameters of the

Fig.11. The Hybrid Petri Net model of the process, according to the above connexion of tanks.

two tanks $D_1 = 0.3$ m and $D_2 = 0, 2$ m, $q_1 = 10$ l/min., the diameter of connection pipe $d_{c1} = 0.01$ m, the diameter of the outlet pipe $d_{c2} = 0.05$ m and $t_1 = 10$ s, $t_2 = 15$ s.

IV. CONCLUSIONS

In the paper, two hybrid systems were analyzed using Hybrid Petri Nets model techniques: a liquid level control

process in a tank and then, starting from this basic structure, a two interconnected tanks plant. Continuous subsystems have been represented as Continuous Petri Nets with variable speed of transitions, depending on the marking of continuous places and the discrete part (controller) was modelled using discrete Petri Nets. The accuracy and correctness of the models was verified by simulation with Visual Object Ne++ tool, comparing the results for different simulation scenarios with similar ones, obtained through other technical tools (Matlab – Simulink, Modelica etc.), or with laboratory experimental tests.

HPN paradigm remains a powerful tool for analyzing hybrid systems, even if for complex processes the model's achievement remains a laborious activity. In this case, a possible approach is based on Petri Nets Objects, which gives to the models a greater flexibility and an increased modularity.

One of the important advantages of the using this concept is the ability to describe a larger system by the decomposition into interacting objects. Then, using the properties of the synthesized objects, finding an improved version of the model can be made easier. The objectoriented concept unites the advantages of the modules and hierarchies and adds powerful new concepts and skills like reuse, encapsulation and information hiding.

Starting from the achieved models, the next step consists in the synthesis of the sequential controller for the whole process.

ACKNOWLEDGMENT

Source of research funding in this article: Research program of the Electrical Engineering Department financed by the University of Craiova.

Received on July 16, 2017 Editorial Approval on November 15, 2017

REFERENCES

- P.J. Antsalkis, W. Khone, A. Nerode, S. Sastry (Coordinators), "Hybrid Systems II", in *Lecture Notes in Computer Science 999*, Springer-Verlag, 1995.
- [2] P. J. Antsalkis, J. A. Stiver, M. D. Lemmon, "Hybrid systems modeling and autonomous control systems", Workshop on Theory of hybrid Systems, in *Lecture Notes in Computer Science* 736, Springer-Verlag, pp.336-392, 1993.
- [3] M. S. Branicky, "A unified framework for hybrid control", in Proc. 33rd Conference on Decision and Control, Lake Buena Vista, Fl., USA, pp. 4228 – 4234, 1994.
- [4] B. Cébron, Commande de systèmes dynamiques hybrides Thèse, Université d'Angers, France, 2000.
- [5] R. David, H. Alla, "On hybrid Petri Nets", in *Discrete Event Dynamic Systems: Theory and Applications*, 11, 2001, pp. 9 40.
- [6] R. David, H. Alla, Discrete, Continuous and Hybrid Petri Nets, Springer-Verlag 2005. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.
- [7] I. Demongodin, N. T. Koussoulas, "Modelling of hybrid control systems using Petri nets", (Zaytoon, 1998), pp.330 – 337, 1998.
- [8] I. Demongodin, F. Prunet, "Batch Petri Nets", in *Proceedings of* 7th Annual European Computer Conference, Paris, 1993, p.29-37.
- [9] R. Drath, "Objektorientierte modellierung hybrider prozesse vorstellung eines neuen werkzeuges", in *IWK*, 42, pp. 533 – 540, 1997.

- [10] R. Drath, Tool Visual Object Net ++, Available at: <u>http://www.daimi.au.dk/PetriNets/tools</u>.
- [11] R. Drath, "Hybrid object nets: an object oriented concept for modelling complex hybrid systems", *Dynamical Hybrid Systems*, ADPM98, Reims, 1998.
- [12] M. A. Drighiciu, D. C. Cismaru, "Hybrid Petri Nets in modeling the packing processes: case Study", in *Annals of the University of Craiova, Electrical Engineering series*, No. 39, 2015; ISSN 1842-4805, pp.93 – 100.
- [13] M. A. Drighiciu, "Petri Net formalism for a possible hierarchical structure of complex hybrid systems", in *Proceedings of 6th International Carpathian Control Conference*, Miskolc – Lillafüred, Hungary, pp. 371- 376, 2005.
- [14] M. A. Drighiciu, Gh. Manolea, D. C. Cismaru, Anca Petrişor, "Hybrid Petri Nets as a new formalism for modeling electrical drives", in *Proceedings of International Symposium on Power Electronics, Electrical Drives, Automation and Motion – SPEEDAM 2008*, ISBN: 978-1-4244-1664-6, IEEE Catalog Number: CFP0848A-CDR, Ischia, Italy, 11th – 13th June, pp.626-631, 2008.
- [15] M. A. Drighiciu, Gh. Manolea, Anca Petrisor, M. C. Popescu, "On hybrid systems modeling with Petri Nets", Recent Advances in System Science and Simulation in Engineering, in *Proceedings of the 7th WSEAS International Conference on System Science and Simulation in Engineering (ICOSSSE'08)*, Venice, 21- 23 November, pp.73-78, 2008.
- [16] M.A. Drighiciu, Anca Petrişor, "A modified Petri Net framework for hybrid systems modeling", in *Analele Universității din Craiova; Seria Inginerie Electrică*, Anul 35, No.35, ISBN:1842-4805, Editura Universitaria Craiova, pp.158-165.
- [17] E. Dubois, "Continuous Petri net with maximal speeds depending on time", in Proc. Of 15th International Conference on Application and Theory of Petri Nets, Zaragoza, Spain, 1994.
- [18] S. Engell, G. Frehse, E. Schneider (Coordinators), "Modelling, analysis, and design of hybrid systems", in *Lecture Notes in*

Control and Information Sciences 279, Springer-Verlag, 2002, ISBN: 3-540-43812-2, pp.3-36.

- [19] Maria Pia Fanti, G. Iacobellis, A. M. Mangini, "Freeway traffic modeling and control in a first-order Hybrid Petri Net framework", in *IEEE Transactions on Automation Science and Engineering*, Volume 11, Issue: 1, Jan. 2014, pp.90 – 102.
- [20] J. M. Flaus, "Hybrid flow nets for batch processes modelling and simulation" in *Proceedings of 2nd IMACS MATHMOD Conference*, Viena, 1997, p.211 – 216.
- [21] R. L. Grosmman, "Hybrid Systems", in *Lecture notes in Computer Science*, Springer, New York, Vol.736, 1993.
- [22] X. Lu, M.C. Zhou, A. C. Ammari, J.Ji, "Hybrid Petri Nets for modeling and analysis of microgrid systems", IEEE/CAA, in *Journal of Automatica SINICA*, Vol. 3, No. 4, October 2016, pp 349 – 356.
- [23] L. A. M. Riascos, L. A. Moscato, P.E. Miyagi, "Detection and treatment of faults in manufacturing systems based on Petri Nets", in *Journal of the Brazilian Soc.of Mech.Sci.&Eng.*, Vol.XXVI, No.3, July – September, 2004, p.280 – 289.
- [24] A. T. Sava, H. Alla, "Combining hybrid Petri Nets and hybrid automata", in *IEEE Transaction on Robotics and Automation*, Vol.17, No.5, October 2001, p.670 – 678.
- [25] C. Valentin-Roubinet, "Hybrid dynamic system verification with mixed Petri Nets", in *The 4th International Conference on Automation of Mixed Processes: Hybrid Dynamic Systems*, Dortmung, Shaker Verlag, Aachen, pp.231-236.
- [26] Emilia Villani, P. E. Miyagi, R. Valette, Modelling and Analysis of Hybrid Supervisory Systems; a Petri Net Approach, Springer-Verlag, 2007, ISBN 978-1-84628-650-6, pp. 1-13.
- [27] J. Zaytoon (Coordinator), Systèmes dynamiques hybrides, Hermes-Science, 2001.
- [28] A. Zimmermann, G. Hommel, "Modeling and evaluation of manufacturing systems using dedicated Petri nets", in *International Journal of Advanced Manufacturing Technologies* No.15(2),p.132–138.