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Abstract – This paper makes an analytical study, a numeri-
cal and an experimental analysis of the magnetic forces 
which act in magnetic liquids during the experiment called 
Quincke’s effect. Quincke’s effect consists in the rise of the 
magnetic liquid between the poles of an electromagnet. In 
ferrohydrodynamics theory, the forces acting in the mag-
netic liquid are not always treated in a uniform manner. 
The main goal of this paper is to give a consistent macro-
scopic view, pointing out the importance of the magne-
tostriction in the force localization understanding. If the 
absence of the magnetostrictive term in the forces expres-
sion leads to an exclusively superficial localization of the 
forces, the presence of this term leads both to a superficial 
localization of forces as well as their presence in the mag-
netic liquid volume. Moreover, in the magnetic liquid rise, 
the volume forces have a significant contribution than the 
surface forces, so the magnetostrictive term shall not be 
neglected. In this analysis, the magnetic liquid will be con-
sidered as a linear and nonconducting medium placed in a 
stationary (or quasistationary) field. In order to support the 
analytical study, a numerical analysis of the magnetic forces 
and some qualitative experiments were made. The value of 
the magnetic field forces which act in the magnetic liquid 
were established in Matlab using the magnetic field strength 
established by FEM analysis. Analyzing the numerical re-
sults and the magnetic liquid deformation obtained by ex-
periments, the main conclusion consists in the fact that the 
magnetostrictive term has an important contribution in the 
localization of the forces, so it shall be taken into considera-
tion. 

Cuvinte cheie: lichide magnetice,ferofluid, forţă magnetică de 
volum, forţă magnetică de suprafaţă, efectul Qunicke, modelare 
cu elemente finite.  

Keywords: magnetic liquids ,ferrofluid, magnetic volume force, 
magnetic surface force, Qunicke’s effect, FEM modelling. 

I. INTRODUCTION 

The expression of the force density exerted by field on 
a nonconducting liquid from classical electrodynamics [1, 
2], is known as: 
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where H is the magnetic field strength, μ the permeability 

and τ the mass density of the fluid. The term f v  is called 
maxwellian (which was established by J.C. Maxwell), and 

f v  is the magnetostrictive term (which was established 
by D. Korteweg and H. Helmholtz). 

Studying the effects of the field forces (including the 
famous experiment Quincke), ferrohydrodynamics sys-
tematically neglects the magnetostrictive term [3-5]. The 
main reason is that the liquid is (basically) considered to 

be incompressible, so µ(τ) = const. and  . Another 
reason that might lead to this simplifying hypothesis is the 
fact that being a conservative term (expressed by a gradi-

ent), the magnetostrictive component 

0f  v

f v  does not affect 
the total force exerted by the field or has a lesser, negligi-
ble contribution. Finally, the density expression  which 
only has the maxwellian term, becomes formally identical 
with the form obtained by the microscopic forces media-
tion [6]: 
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where M is the magnetization vector and µ0 is the perme-
ability of vacuum. To obtain the above relation, the fol-
lowing identities have been used:  1M H=m r    H  

( m  is the magnetic susceptivity and  is the relative 
permeability) and 
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where 0H   when there is no electrical conduction. 
Indeed, in the particular case of uniform field (when 

MH=const.), (2) is reduced to: 
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
 , (1) formally identical with f v  from (1). However, it should 

be remarked that (1) was deduced in the general case of 
nonuniform field and the possible presence of the electri-



cal conduction. Moreover, as the microscopic dipoles are 
placed in vacuum, the microscopic models have no way to 
highlight the magnetostriction of the liquid. 

Considering the liquid as homogeneous medium 
( ), the maxwellian term will also be zero, so that 

even the density  is cancelled ( ). Starting from 
this fact, the forces exerted by the field, are located only in 
the discontinuity surface between the two media of μ

0 
fv 0f v

1 and 
μ2 permeability, [1, 2]: 
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where Bn and Ht are respectively the normal and tangen-
tial components of flux density and field strength, and 

 is the unit normal vector to the surface directed to-
wards the second medium. That explains the development 
in literature study of the interfacial instabilities (including 
the electrical case [7]). 
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II. QUINCKE’S EFFECT AND ITS CURRENT 

INTERPRETATION 

The Quincke’s effect, which carries the person’s name 
who used it for determining the permittivity [8], consists 
in the raising of a nonconducting liquid placed in an elec-
tric field generated within a plan capacitor’s plates. 

A similar rise could be observed when a magnetic liq-
uid is placed in a magnetic field generated between the 
poles of an electromagnet, – Fig. 1. 

Because the liquid is considered homogeneous, the 
force exerted by the field is located only in the free sur-
face of A area. Since it is a field surface, Bn = 0 , Ht = H , 
the expression (5) becomes for μ1 = μ and μ2 = μ0: 
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Referring to the  direction, it is asserted that the 

force  exerts traction, resulting the rise h of the liquid. 
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In the new equilibrium state, the total force f AS  is 
equal in magnitude to the weight of the liquid column: 
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where g is the acceleration due to gravity and h is the 
height of rise. From (7) it results: 
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Fig. 1. The Quincke’s effect. 

Although the deduced relation (8) is well proved by the 
experience [4, 5], the actual physical mechanism of the 
effect appears to be totally different. This fact will be 
proved by taking into account the magnetostrictive term, 
which cannot be neglected. Actually, the magnetostrictive 
term has no contribution on the total force generated by 
the field, but it has a major influence over the spatial dis-
tribution of the local forces, [6]. 

III. THE VOLUME FORCES IN THE PRESENCE OF 

MAGNETOSTRICTION 

Supposing that μ = µ(τ), we can write [2]: 

 

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, (9) 

and the magnetostrictive term of volume force becomes: 
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In this way, the expression (1) of the force density can 
be written in the form: 

 

2 2

2

1 1 1

2 2 2

1

2

f H H H

H

  2        
     

v 
. (11) 

Due to the fact that the maxwellian term is cancelled by 
a part of the magnetostrictive term, the relation (11) points 
out that the magnetostrictive term is much higher than the 

maxwellian term ( f f v v ). As a consequence, the 
magnetostrictive term cannot be neglected [1, 2], regard-
less of the stated reasons. 

Considering the magnetic liquid as a homogeneous me-

dium ( .const


 


), (11) becomes: 
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Since the magnetic liquids are weak magnetic media, in 
the domain of applicability of the “Clausius – Mosotti” 
relation [6]: 
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we have: 
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, (14) 

in the force density expression. 

The final force density (12) shows that 0f v  in non-
uniform fields (even for homogeneous media), the force is 
oriented towards the more intensive field areas. In particu-
lar case of the Quincke’s experiment – Fig. 2, these forces 
are located around the end effect area, around the lower 
extremity of the poles, “pushing” the liquid towards the 
uniform field area (where the field has more intensity). 
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Fig. 2. The volume forces localization. 

For a magnetic liquid placed in a magnetic field, these 
forces are responsible for the excess of the magnetic pres-
sure (with regards to a reference point of zero field): 
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The expression (15) was well verified by experience in 
the similar electrical case [9]. 

IV. THE SURFACE FORCES TAKING INTO ACCOUNT THE 

MAGNETOSTRICTION 

The surface force density along an interface between 
two different liquids, placed in a magnetic field, is [1, 2]: 
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If the interface between the liquids is a field surface 
(Fig.1), Bn =0 , Ht =H , (16) becomes: 

21 2 2 1
2 1

2 1

1

2 2
f nH

    
        

S 12
2 nH  12

ity

.

 (17) 

Moreover, using Quincke’s conditions (μ1 = μ , μ2 = 
μ0), the force dens  fS   is: 
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which in domain of applicability of “Clausius – Mosotti” 
relation, becomes: 
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As a consequence, on the liquid surface, the forces act 
as a compression and not as traction, how it resulted in the 
absence of the magnetostrictive term. – Fig. 3. 

In Quincke’s experiment, the forces (19) induce in liq-
uid an additional pressure: 
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Fig. 3. The compression surface force. 

V. THE ACTUAL PHYSICAL MECHANISM OF THE 

QUINCKE’S EFFECT 

The resulting magnetic pressure due to the simultane-
ous action of volume and surface forces (Fig. 4) is ob-
tained using (15) and (20): 
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It could be remarked that the magnetostrictive term is 
lost in the final relation [10]. Since the pressure pm gener-
ates the rise h of the fluid, the new equilibrium state oc-
curs when the total force will be balanced by the liquid 
weight: 

 mp A gAh  . (22) 

From (21) and (22), we have: 
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which is identical with (8). 
Comparing the volume and surface forces influence 

over the pressure pm, it could be proved that, for weak 
magnetic fluids, pmv > pms. Considering (14) as well, it 
results: 
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Fig. 4. The actual spatial localization of the forces. 
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VI. NUMERICAL ANALYSIS USING FEM METHOD 

The conclusions from the analytical study can be 
proved by the results obtained from numerical analysis. 

In order to compute the values of the magnetic forces 
which act in ferrofluid in the Quincke’s effect case, the 
magnetic field strength was established by numerical 
modelling using the 3D-FEM program Opera 13 of Vector 
Fields [11]. The analysis program used to solve this prob-
lem was TOSCA algorithm which can analyze magne-
tostatic fields from defined current sources. This algorithm 
is based on vector potential formulation. 

The values of the magnetic field strength were estab-
lished inside a sample of ferrofluid, having a paral-
lelipipedal shape 2.8x4.5x5.3cm. This sample was placed 
between the cylindrical poles of a Weiss electromagnet 
(with the radius of the poles ), with the air gap 
having the length δ = 4.5cm and the coils being powered 
by a DC current of 

r 5cm

I 10.05 A . The considered model is 
a scale reproduction of it. The Weiss electromagnet pro-
vides a stationary and quasiuniform field in its air gap. 
Because we had wanted to point out the effect of deforma-
tion of the ferrofluid in the presence and in the absence of 
the end effect in magnetic fluid, we made the FEM analy-
sis for three positions of the ferrofluid sample between the 
magnetic poles: 

a) The ferrofluid sample had placed such that its 
base was in the nonuniform field 

b) The entire ferrofluid sample was placed in the 
uniform field area 

c) The ferrofluid sample had placed such that its 
free surface was in the nonuniform field 

The magnetic fluid is considered linear with relative 
magnetic permeability . μr 2.4

Due to the model symmetry, just a quarter of the ge-
ometry was used in numerical analysis. The model mesh 
has quadratic elements having approximately 20000 nodes 
(Fig. 5). 

In the domains of interest of the model (the ferromag-
netic core, the air gap and the magnetic liquid), the mag-
netic vector potential A  fulfils a Laplace equation 

 , and the magnetic field fulfils 2 0 A div 0B , 
 and  in ferromagnetic core, curl 0H

μ0
μB H

B H  in the air and μlB H  in magnetic liquid. In 
the sources domains, the magnetic vector potential A  

fulfils a Poisson equation   . μ2 A J

 

Fig. 5. The mesh of the model. 

All analyzes have the following boundary conditions: 
the boundary passing through the center of the air gap 
being parallel with the poles surfaces is normal magnetic 
boundary   0  A n

A n

, and all the rest are tangential 

magnetic boundaries 0  . 
The values of the magnetic field strength established by 

modelling (Fig. 6a, b,c) were used to compute the values 
of the surface and volume forces, for all three positions of 
the ferrofluid sample between the magnetic poles.  

 
a) 

 
b) 

 
c) 

Fig. 6. The magnetic field strength distribution (complete model 
and detail) for: a. the ferrofluid sample having the base placed in the 

nonuniform field; b. the ferrofluid sample placed in the uniform field; c. 
the ferrofluid sample having the free surface placed in the nonuniform 

field. 



The surface forces were computed using the magnetic 
field strength in the magnetic liquid free surface. The vol-
ume forces were established in two parallel planes with 
the poles surface passing through the coordinates x = 0cm 
and x = 1.8cm and in two perpendicular planes on the 
poles surface passing through the coordinates z = 0cm and 
z = 1.2cm. The values of both forces were computed in 
Matlab with (15) and (19).  

All results are presented in graphical forms. Fig. 7.a, b, 
c shows the surface force distribution:  

 
a) 

 
b) 

 
c) 

Fig. 7. The specific surface force distribution for: a. the ferrofluid 
sample having the base placed in the nonuniform field; b. the ferrofluid 
sample placed in the uniform field; c. the ferrofluid sample having the 
free surface placed in the nonuniform field. 

Analyzing qualitatively these results it is observed that 
the surface forces are negative so they have an opposite 
orientation to , exerting a compression against the 
magnetic liquid. This compression is more intensive at 
poles extremity (Fig.7a)) when the ferrofluid is placed 
with the base in the nonuniform field. In the case with the 
ferrofluid placed in the uniform field (Fig.7, b)), the sur-
face forces exert a quasiuniform compression in the point 
of the free surface of the magnetic liquid. In the last case 
(Fig. 7c)), the compression is more intensive in the central 
points of the free surface, but the values of forces are the 
lowest of them all, due to the lower values of the magnetic 
field strength. The compression due to the surface forces 
leads to the ferrofluid surface deformation. This deforma-
tion is more pronounced in the case a, due to the high 
value of the magnetic field strength in the free surface 
points. 
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The volume force distribution in both parallel planes 
with the poles surface is shown in Fig. 8a, b, c for x = 0cm 
and Fig. 9a, b, c for x = 1.8cm. 

Analyzing qualitatively these results, it is observed that 
they have positive and negative values. Due to the fact 
that they are expressed by a gradient ( 2H ), the sign 
gives the clue about their orientation related to the surface 
forces orientation. 

 

 
a) 
 

 
b) 

 
 
 



 
c) 

Fig. 8. The specific volume force distribution in a parallel plane with 
the poles surface passing through x = 0cm, for: a. the ferrofluid sample 
having the base placed in the nonuniform field; b. the ferrofluid sample 
placed in the uniform field; c. the ferrofluid sample having the free 
surface placed in the nonuniform field. 

 
a) 

 
b) 

 
c) 

Fig. 9. The specific volume force distribution in a parallel plane with 
the poles surface passing through x = 1.8cm, for: a. the ferrofluid sam-
ple having the base placed in the nonuniform field; b. the ferrofluid 
sample placed in the uniform field; c. the ferrofluid sample having the 
free surface placed in the nonuniform field. 

The volume force distribution in both perpendicular 
planes with the poles surface is shown in Fig. 10a, b, c for 
z = 0cm and Fig. 11a, b, c for z = 1.2cm. 

 
a) 

 
b) 



 
c) 

Fig. 10. The specific volume force distribution in a perpendicular plane 
on the poles surface passing through z = 0cm, for: a. the ferrofluid sam-
ple having the base placed in the nonuniform field; b. the ferrofluid 
sample placed in the uniform field; c. the ferrofluid sample having the 
free surface placed in the nonuniform field. 

 

 
a) 
 
 
 

 
b) 
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Fig. 11. The specific volume force distribution in a perpendicular plane 
on the poles surface passing through z = 1.2cm, for: a. the ferrofluid 
sample having the base placed in the nonuniform field; b. the ferrofluid 
sample placed in the uniform field; c. the ferrofluid sample having the 
free surface placed in the nonuniform field. 

When the magnetic liquid is placed with the base in the 
nonuniform field, the volume forces have positive values 
in almost all points of these planes (Fig. 8a, Fig. 9a, Fig. 
10a and Fig. 11a). These forces have higher values, the 
closer to the poles surface they are (x = 1.8), and a uni-
form distribution after z axes. So, they have such an orien-
tation that their pressure will compensate the pressure of 
the surface forces in magnetic liquid. As a result of the 
combined action of both pressures produced by the two 
specific forces, in the presence of magnetostriction and of 
the end effect, the magnetic liquid will rise between the 
electromagnet poles. The rise should be higher at poles 
surface. 

For the magnetic liquid placed in the uniform field, the 
volume forces have both positive and negative values 
(Fig. 8b, Fig. 9b, Fig. 10b and Fig. 11b). Due to the fact 
that only the pressure due to the positive values compen-
sates the pressure of the specific surface forces, then the 
magnetic liquid rise is much less than in the previous case. 

When the magnetic liquid is placed with the free sur-
face in the nonuniform field, the volume forces have nega-
tive values in almost all points of the planes (Fig. 8c, Fig. 
9c, Fig. 10c and Fig. 11c). So, due to this orientation, their 
pressure amplifies the pressure due to the surface forces. 
The volume forces have higher values in the end effect 
area and closed to the poles surface. As a result of the 
combined action of both pressures produced by the two 
specific forces, the magnetic liquid will be compressed 
between the electromagnet poles. This effect has more 
intensity the closer to the poles surface it is. 

VII. EXPERIMENTAL ANALYSIS 

In order to verify the conclusions from the analytical 
study, an experimental analysis was made. A magnetic 
liquid sample, having the same size and shape as in the 
numerical analysis was placed between the poles of the 
Weiss electromagnet, having the coils powered by a DC 
current of I 10.05A . The rise of the magnetic liquid was 
measured and analyzed having as reference the middle 
point of the free surface at the start of the experiment. 
Fig.12a, b, c shows the rise of the magnetic liquid for the 
three cases analyzed above: 



 

       
 a)     b)      c) 

VIII. CONCLUSIONS 

Although the magnetostrictive terms that appear in the 
specific force expressions do not have a contribution on 
the total force exerted by the magnetic field, they are im-
portant in the force localization, and, as a consequence, in 
understanding of the actual physical mechanism of the 
occurred effects. 

The main role for the magnetic field rise in Quincke’s 
effect case is due to the volume forces which act in the 
end effect being oriented towards the more intensive field 
area .This thing can be proved analytical if the magne-
tostrictive term is not neglected in the magnetic forces 
expressions. Its absence in the forces expression leads to a 
superficial localization of the forces which exert traction 
on the points of the free surface.  

Following this explanations, the mechanism of other 
specific related effects could be reconsidered, for exam-
ple: the raising of the magnetic liquid around a vertical 
conductor with a current flow, or getting vertical liquid 
“bridges” (including in the microgravity), etc. 

ACKNOWLEDGMENT 

Fig. 12. The magnetic liquid rise, for: a. the ferrofluid sample having the 
base placed in the nonuniform field; b. the ferrofluid sample placed in 
the uniform field; c. the ferrofluid sample having the free surface placed 
in the nonuniform field. 

Source of research funding in this article: Research 
program of the Department of Physical Foundations of 
Engineering, Politehnica University of Timisoara. 

 
Received on September 11, 2018 
Editorial Approval on November 15, 2018 

Doing a qualitatively analysis of the effects observed by 
experiments, we can establish the following conclusions: REFERENCES 

- Due to the end effect, the volume forces exert a 
higher pressure in the magnetic liquid, these 
forces being oriented towards the more intensive 
field area. They compensate the pressure due to 
the surface forces, pushing the liquid between the 
poles and causing the higher rise of the ferrofluid 
sample (Fig.12 a)). 

[1] Abraham M. and Becker R., The electricity theory - Theorie der 
elektrizität, Bd.1, Teubner – Verlag, Leipzig, 1932. 

[2] Stratton J.A., Electromagnetic theory, McGraw-Hill Book Com-
pany, New York and London, 1941. 

- When the ferrofluid is placed in the uniform field 
(Fig.12 b)), a part of the volume pressure com-
pensates the pressure due to the surface forces 
while the other part amplifies this effect. This 
thing causes a small rise of the magnetic liquid in 
the middle point of the free surface, but a higher 
rise close to the poles surface. 

[3] Jones T.B. and Krueger D.A., “An experimental and theoretical 
investigations of the magnetization properties and basic electro-
mechanics of ferrofluids”, Office of Naval Research, Colorado, 
Contract No. 097-390/06-29-73/473, Final report, 1977. 

[4] Rosensweig R.E., Ferrohydrodynamics, Cambridge, 1985. 

[5] Odenbach S., Handbook of magnetic materials - Ferrofluids, 
Elsevier B.V., vol.16, Amsterdam, 2006. 

[6] Tamm I.E., Bazele teoriei electricităţii, Ed. Tehnică, Bucureşti, 
1952. 

- When the ferrofluid sample is placed with the 
free surface in the nonuniform field, the volume 
forces pressure amplify the effect of the surface 
forces pressure causing a small deformation of 
the liquid free surface (Fig.12 c)). 

[7] Melcher J.R. and Taylor G.I., “Electrohydrodynamics: a review of 
the role of interfacial shear stress”, Annual review of fluid mechan-
ics, vol.1, 1969. 

[8] Quincke G., Wied. Ann., Bd.10, s.161-203, 1881. 

[9] Hakim S.S. and Higham J.B., “An experimental Determination of 
the Excess Pressure produced in a Liquid Dielectric by an Electric 
Field”, Proc. Phys. Soc., vol.80, 1962. 

[10] Durand E., Electrstatics and magnetostatics - Electrostatique et 
magnetostatique, Masson et Cie, Paris, p 775, 1953. 

[11] Opera 13, 3D-Reference manual, Vector Fields, 2009. 

  
 

 
 


	I. Introduction
	II. Quincke’s Effect And Its Current Interpretation
	III. The Volume Forces In The Presence Of Magnetostriction
	IV. The Surface Forces Taking Into Account The Magnetostriction
	V. The Actual Physical Mechanism Of The Quincke’s Effect
	VI. Numerical Analysis Using FEM Method
	VII. Experimental Analysis
	VIII. Conclusions
	Acknowledgment
	References


