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Abstract - In the present paper it is started a qualitative 

analysis of the Lü dynamical system, using the appropiate tools 

of Hamilton-Poisson geometry and using the software for 

mathematics MAPLE 15. The Lü’s system arise from electrical 

engineering networks and it is very known that he has a 

chaotic behavior. For this reason, the problem of finding the 

solution of the system could be very difficult. By obtaining of a 

geometric Hamilton-Poisson structure, we can find such a 

solution as the intersection of two surfaces, the surfaces 

equation being given by the Hamiltonian    and the Casimir 

function   . Using MAPLE 15, it will be analyzed the phase 

portrait for two particular simplified versions of the dynamical 

system associated to the Lü ordinary differential system (a=0, 

b=c=0 and a=1, b=c=0). Also, we will do a study of the 

Lyapunov stability of Lü’s system for the particular case (a=1, 

b=c=0). We obtain that the origin is an unstable equilibrium 

point for this particular parameter case of the Lü’s model. This 

fact is confirmed by the numerical simulations. More that, the 

pictures show that the origin is a non-stable focus, in the first 

simulation case. Analytical results are accompanied by 

numerical  illustrations. 

Cuvinte cheie: system dynamic Lü, structura Hamilton-
Poissone, portretul fazelor  stabilitate Lyapunov. 

Keywords: Lü dynamical system, Hamilton-Poisson structure, 
phaseportrait,  Lyapunov stability. 

I. INTRODUCTION 

The chaotic oscillations in a physical system, that is the 

chaotic behavior of the system, was observed in practical 

applications of many fields, from engineering to biology and 
economics. Using the tools of dynamical system theory, the 

Chaos can be suppressed using linear or nonlinear feedback 

methods ([1], [2], [3], [4]). Then, using a simple linear 

controller, the system is driven to a stable state ([5], [6]). 

The Lyapunov function method ([7]) is very used in this 

purpose and, also, the tools of numerical analysis are very 

useful  to support the analytical  results ([8], [9]).  

The history of the study of RLC networks starts not very 

far, from the early fifties, but the technical explanations, 

journal references, and interactions with other disciplines 

are rich ([10], [11]). This theory lies basically on the 
conceptual modeling of electrical circuits. It is advantageous 

to realize the description of a system in terms of an ideal 

model, like an interconnection of idealized elements. These 

idealized elements (which are simple models) are used to 

approximate the properties of separate physical elements of 

the system.  

The developments of linear network theory focused the 

attention of researchers. Besides the various fundamental 

contributions, there has always been a particular interest in 

studying the relations between basic equations of mechanics 

and the basic laws of electrical networks. 
For a quite long time, the results of classical mechanics  

were the basis of the mathematical modeling of linear 
networks, namely, the models have been stated basically  in 
terms of the Lagrangian and Hamiltonian formulations of 
physical systems ([12], [13], [14]). These formulations are 
important because they provide a systematic, compact and 
elegant system description in which physical quantities like 
energy, interconnection and dissipation play a central role. 
Thus, the results may be easily translated into network 
terminology.  

The Lü’s dynamical system was first proposed by J. Lü  
and G. Chen in 2002 in the paper [15]. This system is a 
model of a nonlinear electrical circuit, and we want to study 
it from mechanical geometry point of view and to point out 
some of its geometrical and dynamical properties. The 
original Lü system  has  the following form ([15], [16]): 

                  
         

         
         

                                        (1) 

where a, b, c are real parameters. 

The Lü dynamical system (1) admits a Hamilton-Poisson 

realization for some values of the parameters  ,  , and   

([17], [18], [19]). More exactly, the Lü system admits 

Hamilton-Poisson realization with a three degree 

polynomial function as the Hamiltonian only if      
   , or         .  

The Hamilton-Poisson realization offers us the tools to 
study the Lü system from mechanical geometry point of 
view.  

The Lü system  has three unknown uncertain parameters. 
It was studied from various standpoints. The system exhibits 
a chaotic attractor at the parameter values     ,     and 
      ([3], [16]). Taking into account these values, a 
projective synchronization of two identical Lü attractors was 
realized by an adaptive feedback control. The analysis of the 
errors’ trajectories for two identical Lü systems with 
adaptive feedback control issued useful applications ([3], 
[12], [15]).  This autonomous system of ordinary differential 
equations, together with Lorentz’s system and Chua’s 
system, was generally accepted then as having chaotic 
behavior  ([4], [10], [11], [12]).  

The first aim of the present paper is to test the Lü 
dynamical system behavior for two sets of the parameters:  
           and            . The soft Maple 
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was used to analyze the phase portrait of the model is this 
cases. The second aim is to analyze the existence of a 
Lyapunov function for a particular case  of the Lü system in 
order to check the  stability or instability of  the equilibrium. 

II. A BRIEF REVIEW OF THE HAMILTON-POISSON GEOMETRY  

In this section it will be present briefly the main notions  
from the geometry of Hamilton-Poisson structures (like in 
[12]  and [16]).  

If    is a smooth manifold and         denote the set 
of the smooth real functions on  , then a Poisson bracket  
(or a Poisson structure) on   is a bilinear map from   
                into       , denoted by 

                   ,               

which verifies the following properties: 

for all              , we have 

Skew-symmetry:  

             

Jacobi identity:  

                                

Leibniz rule: 

                         

The pair             is called a Poisson manifold.  

If         is a Poisson structure on   , then for any 
             we have  the following relation: 

              
  

   

  

   

 

     

 

Any Poisson structure on    is completely determined 

by the matrix                         
  via the relation: 

                                    

A Hamilton-Poisson system on    is a triple  

            , where       is a Poisson bracket on     and  
           is called the energy or  the Hamiltonian.  Its 
dynamics is described by the following system of 
differential equations: 

           

where                   
 .  

A Casimir function for the Poisson structure        on     
is a function           which satisfies  

       , for all          . 

A function            is called conservation  law  (or 
first integral) for Hamilton–Poisson system             ,  if  
the  total derivative   of   ,  vanishes, i.e.  

   
  

  
  

  

   

 

   

            
  

   

  

   

 

     

   

or, 

       . 

It is known that any Hamilton-Poisson system who 
admit a Casimir function has at least two conservation laws: 
the Hamiltonian    and the Casimir function   .  Also, any 
linear combination of   and  ,           ,      , 

is a new conservation  law  for and  this first integrals  ,  , 
      are  linear dependent ([12], [16], [19], [20]).  

If a dynamical system has a Hamilton-Poisson 
realization, that means it can be written in the form  
          . In this case, the dynamical system has not a 
chaotic behavior and the problem of finding conservation 
laws is very important for the study of the integrability and 
stability of the system ([14], [15], [16], [19], [20], [21]). 

III. THE HAMILTON-POISSON  REALIZATIONS FOR SIMPLIFIED 

VERSIONS OF THE LÜ  SYSTEM   

In this section  it will be presents some Hamilton-Poisson 
structures of  the  dynamical system of  Lü. This system who 
arise from electrical engineering networks has a chaotic 
behavior. For this reason, the problem of finding the solution 
of the system could be very difficult.  

A Hamilton-Poisson realization offers us the possibility 
to find this solution as the intersection of two surfaces, the 
surfaces equation being given by the Hamiltonian    and the 
Casimir function   .  

There are only four cases for which the Lü system admits 
as Hamiltonian a three degree polynomial function and 
finding another kind of function as a Hamiltonian of the Lü 
system remains an open problem ([15], [16], [17], [18]).  

From [16] and [17], we have that: 

I. For a non null  and         the system becomes: 

      
         
      
     

                                         (2) 

The function 

                     , 

where  ,    , is a constant of motion (conservation  law) 

for this system. 
II. For     and     are non null real numbers the 

system becomes: 

 
    
         
         

                                       (3) 

The function 

                
where        , is a constant of motion (conservation  

law) for this system. 
III. For   non null and      any real numbers the 

system becomes: 

   
         
         
         

                                        (4) 

The function 

                                , 
where where α      and        ,  is a constant of 
motion (conservation  law) for this system. 

 

 



IV. For              the system becomes: 

 
    
      
     

                                                  (5) 

The function    

       )=α       +β              , 

where α, β     and        , is a constant of motion 
(conservation  law)  for this system. 

For this, it is enough to check that        for each case 
mentioned above, that means that the function   is constant 
along the integral curves of  the dynamical system. 

The first case is when    is any real number and      
 . For this specific case, there exists a Hamilton-Poisson 
realization if and only if       ([17]). 

For the case     and       are any real numbers, in [17] 
it has proved that the Hamilton-Poisson realization exists 
only if    .   

The last two cases,    ,     and         , can 
be studied as the first two cases. 

We can conclude that the Lü system admits Hamilton-
Poisson realization with a degree three polynomial function 
as the Hamiltonian only if         , or       ,  
    . 

IV. PHASEPORTRAIT  OF THE  LÜ MODEL FOR SOME TESTING 

PARAMETERS VALUES   

The aim of the present paper is to test the Lü dynamical 
system behavior for some starting values of the parameters 
set. The sets            and              are 
the simplest studied ([16], [17]). The soft Maple was used to 
analyze the phase portrait of the model ([9], [16]). The 
flexible appliance “phaseportrait” allows the interactively 
use of all options. 

For the present aim the              phaseportrait was 
chosen. Two cases for the discrete time were taken into 
account, and also two initial conditions sets: 

                          and 

                       

Thus, the following simulation cases were analyzed: 

Ai)                                   ; 

Aii)                                  ; 

Bi)                                 ; 

Bii)                                ; 

Each simulation case was analyzed with the discrete time 
units      and    00. It was observed that when 
doubling the time, the values strip does not change in all 
cases for the trajectory. The figures are as follows. Some 
features are labeled on each figure.  

 

 

 

Fig. 1. Case Ai, t = 0 ... 45 

 

 

 

Fig. 2. Case Ai, t = 0 ... 100. The trajectory doesn’t change the trend 

 



 

 

Fig. 3. Case Aii, t = 0 … 45.  The trajectory becomes positive 

 

 

 

Fig. 4. Case Bi, t = 0 … 45. The movement is only along the x axis 
 

 

 

Fig. 5. Case Bi, t = 0 … 100 

 

 
 

Fig. 6. Case Bii, t = 0 ... 45. The trajectory cannot be seen, the interval on x 

axis has infinitely small values 

 

V. LYAPUNOV STABILITY FOR THE LÜ MODEL IN THE 

SIMPLIFIED VERSION 

Let us consider the Lű system in the simplified form 
presented in the above section (a=1, b=c=0): 

                              
      
      
     

                                    (6) 

It is immediate that the origin O          is an 
equilibrium point.  

In this section we analyze the existence of a Lyapunov 
function for the system (6) in order to check the  
stability/instability of the equilibrium. There are few criteria 
for analyzing the stability, very used in the literature. We 



shall test here the first (reduced) criterion and the Krasovskii 
theorem  ([7]). 

First Lyapunov criterion (reduced method): the stability 
analysis of an equilibrium point    is done studying the 
stability of the corresponding linearized system in the 
vicinity of the equilibrium point. 

In the neighborhood of an equilibrium point           the 

following statements  hold: 

A. If all the eigenvalues of matrix linearized matrix    of 
the system have “negative real part”, then the equilibrium 
point           is asymptotically stable also for the nonlinear 
system; 

B. If at least one of the eigenvalues of the matrix      has 
“positive real part”, then the equilibrium point          is 
unstable also for the nonlinear system.  

C. If at least one eigenvalue of the matrix     is located 
“on the imaginary axis” while all the other eigenvalues have 
“negative real part”, then it is not possible to conclude 
anything about the stability of the equilibrium point          
for the nonlinear system. In this case the criterion is not 
effective.  

The linearized matrix     associated to the system (6), that 
is  the Jacobian   ,  is the following: 

                                     
    
     
   

                             (7) 

 
Then one can easily observe that the characteristic 

equation in origin is 

           

with real roots. Therefore, the reduced Lyapunov criterion 
cannot be applied. 

Taking  into account that the system (6) is non linear, we 
apply the Krasovskii theorem ([7]) as follows.  

Let be    from (7) the Jacobian associated to the system 
(6).  If      is negative defined, then  

             

 is a Lyapunov function for the system (6) and the 
equilibrium is asymptotically stable.  

Here      denotes the right side of the system. 

We have the following relation for the Jacobian 
associated  to  (6) 

                  
    
     
   

                                   (8) 

Then we have  

               
      
     
   

                          (9) 

 
One observes that                 .  

Therefore, we cannot define a Lyapunov function with 
the above definition. Thus, the origin is asymptotically 
unstable equilibrium for the Lű model in this simplified 
form. This fact is confirmed by the numerical simulations 

from the previous section. In the previous section, the 
pictures show that the origin is a non-stable focus, in the first 
simulation case.   

VI. CONCLUSIONS 

In the present note it is started a qualitative analysis of 
the Lü dynamical system. For the moment, the simplest sets 
for the parameters values were chosen as study case. 

It is immediate to see that a slightly difference in the 
parameter values in the cases A and B, produces an 
important change in the trajectory trend. In the case A of 
simulation, the origin is a solution, moreover it is a focus 
which changes the sign when changing the initial conditions. 
Doubling the time units produces no change in the values 
limits on x and y. Therefore we can have an important notice, 
that the movement remains on the same trajectory, for any 
large time units’ number.  

In the second case for all parameters zero, we have in fact 
a constant motion on the x axis. Doubling the time units 
produces only an increasing of the limits on y axis. This 
constant motion is confirmed by the constant conservation 
law found geometrically. When changing the initial 
conditions it issues an flagrant change of the trajectory: in 
fact the variation interval on x axis is extremely small and 
the trajectory is no more visible. 

Let us notice that the time units in Maple are non-
dimensional, the user can choose this dimension function of 
the scientific purposes. This flexible feature of graphical 
appliances allows their use in all types of simulations.  

The significant difference between the two simulation 
cases confirms that we have a model which is sensitive to 
initial conditions. This enables us to consider a next target, 
finding a state-space linearization by feedback linearization 
technique. Finding the equivalent model of the Lü dynamical 
system, would help to better study the influence of the 
parameters on the model behavior and also to realize further 
qualitative analysis.  

The fact that the origin is an unstable equilibrium point 
for this particular parameter case of the model, justifies the 
approach of controlling the chaos in the Lü dynamical 
system, in its general form [5], and to further analyze the 
stability for different parameters. 
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