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Abstract – This paper contains a theoretical and experimen-
tal study on rotary magnetostrictive motor, performed with 
the purpose of determining the optimal conditions of opera-
tion. The two main types of magnetostrictive motors known 
from the literature, inchworm respectively resonance pre-
sent the advantage of large and accurately controlled devel-
oped torques for low speed values. The electromagnetic 
torque developed by the rotary magnetostrictive motor be-
ing proportional to the frequency of the current circulating 
through its inductor, became the subject of frequency con-
trol methods.  This fact lead to the idea of controlling the 
torque by controlling the frequency of the current, with 
direct implication in the domain of torque-controlled drives. 
Although the actuator represents the central part of any 
magnetostrictive device, the entire magnetic circuit configu-
ration determines the position of the permanent magnet 
operating point on the linear portion of the magnetostrictive 
characteristic. The paper includes two different methods, 
applied for the permanent magnet operating point alloca-
tion. The magnetostrictive torque was determined and ex-
pressed as function of time, for the full cycle of the periodi-
cal current carried by the actuator’s coil. The cycle of the 
magnetostrictive torque is identical with the cycle of the 
periodical current circulating through the coil of the actua-
tor. The analytical mathematical model developed and pre-
sented in the paper considers both regimes, starting and 
running, making possible the tracking of the operation 
point. Furthermore, was possible to determine the moment 
of separation between the rotor disk and the flexible friction 
element. Several acquired data, recorded at different values 
of power supply frequency, demonstrate a good correlation 
between the theory and experiment.  

Cuvinte cheie: motor magnetostrictiv rotativ, actuator, magnet 
permanent, cuplu magnetostrictiv, funcţionare optimă.  

Keywords: rotary magnetostrictive motor, actuator, permanent 
magnet, magnetostrictive torque, optimal operation. 

I. INTRODUCTION 

The magnetostrictive effect is defined by the elongation or 
contraction associated with the spontaneous magnetization 
of a magnetostrictive material of a quasi-linear (bar) 
shape. In the presence of a gradually increasing magnetic 
field H, the length of the magnetostrictive material in-
creases as well up to a saturation value. Some magne-
tostrictive actuators possess displacement capabilities 
along both axial and radial directions, with direct applica-
tion in machine tools [1].  This type of actuator ensures a 
very high precision of operation, accurately controlling the 
position on a plane surface. There are several other appli-

cation examples of magnetostrictive motor, described in 
[2], built either as linear or rotary. Generally, the inductor 
consists of a Terfenol made bar, introduced inside of an 
inductor whose turns surround it. Energizing the inductor 
with alternating current, will results in the expansion-
contraction movement of the bar: this is the simplest mag-
netostrictive motor with linear displacement. Obviously, 
the conversion of the linear displacement into a revolving 
one is possible [1-6]. Several electric drive solutions based 
on magnetostrictive motors (i.e. linear, rotational or step-
per), share a common characteristic: the rotational move-
ment generated utilizing several linear actuators [7-35]. 
Recent became available a magnetostrictive motor type 
capable to perform axial and radial movements [13]. This 
motor offers a clear solution for the position control in a 
plain area, using two directions (i.e. two degree of free-
dom or 2-DOF), with direct application in high precision 
machining. Terfenol-D is the ideal material used in mag-
netostrictive motors fabrication and presents remarkable 
characteristics: high magnetic stress of 1000-2000 ppm for 
a magnetic field of 50 – 200 kA/m in volumetric materials, 
largest temperature range for operation and an acceptable 
compromise between high tension and high Curie tem-
perature [20-26]. Giant magnetostrictive actuators (GMA) 
manufactured using giant magnetostrictive materials 
(GMM) qualify as a special category [21-23], character-
ized by high Curie temperatures, large developed stress, 
and a large displacement in comparison with the piezo-
electric materials. GMM can provide noncontact driving 
without electrodes, whereas the fabrication process is rela-
tively simple for a multitude shapes [24]. Adding a rela-
tively inexpensive fabrication to the features presented 
above, made the GMA suitable for many applications, like 
electro hydraulic servo valves [15], high pressure common 
rail injectors [22, 23], rotary-linear motion, ultraprecise 
fabrication operations [24], active vibration control [29], 
etc. Addressing the local power consumption, as a critical 
factor [28], a solution resulted in a complete three-phase 
actuator kit including the power electronic converter and 
the DSP based control unit, in which the magnetostrictive 
motor shaft position is monitored by a laser-based position 
sensor, and the displacement is controlled by a closed loop 
system. Such a system has remarkable capabilities like a 
high force of 410N, a speed up to 60mm/min and a dis-
placement of 45mm. The power consumption recorded 
during the tests was only 95W, whereas the actuator has 
the capability of self-braking, being able to preserve its 
position if the power is cut-off.  This paper analyzed cer-
tain considerations regarding the development of the mag-
netostrictive torque developed by the rotary magnetostric-
tive motor, together with the requirements aiming for op-
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timal operation conditions and high performance. The 
dependency between the magnetostrictive torque and fre-
quency of the current is determined and completed with 
mechanical characteristic. The theoretical solution given 
in this paper states the condition for high performance 
operation of the actuator: the permanent magnet must op-
erate at a certain value of the magnetic field strength. This 
value corresponds to the middle of the linear portion of 
“elongation-magnetic field” characteristic, precisely de-
fined for the utilized magnetostrictive material. This study 
targeted multiple objectives concerning the magnetostric-
tive motor: developed torque analysis, mechanical charac-
teristic and the comparison between the theoretical and 
experimental results. A rotary magnetostrictive motor-
built prototype was the subject of laboratory tests for 
comparing theoretical data with experimental ones. 

II. MAGNETOSTRICTIVE MOTOR 

Magnetostrictive motors are of three main types: linear 
motors, rotary motor and pulsating motors. However, the 
utilized actuators have similar constructive configurations 
[5-7]. The principal components of the rotary magne-
tostrictive motor are the actuator and the mobile disk, 
placed on a vertical shaft and guided by two bearings (see 
Fig. 1, and for operation details Fig. 2). The current ib 
circulating through the coil of the actuator is (1): 

tIib sin2   (1) 

 
The magnetomotive force associated to the alternating, 
sinusoidal current described by equation (1), generates an 
alternating magnetic field as well (2): 
 

tHH bmb sin   (2) 

 
The characteristic of the magnetostrictive element given 
in Fig. 3 represents the dependency between the elonga-
tion L and the strength of the magnetic field H. The 
linear portion of the characteristic from  expressed by 
equation (3), is: 
 

HL M  (3) 

 

 
 
Fig. 1.The “generic” sketch of the rotary magnetostrictive motor : 1 şi 1’ 
– bearings, 2 – shaft, 3 –  console, 4 –actuator, 5–friction element, 6 – 
rotor  
 

Applying Hooke’s Law, results dependency between the 
elongation and the effort according to equation (4): 
 

FL H  (4) 
 

 
 
Fig. 2.The rotor’s disk: P – contact point between the disk and the fric-
tion element, rc – the radius of the circle containing the point of contact 
P, β – the angle which denotes the position of point P, M-the developed 
torque which is applied to the rotor 

 
The result is the effort as a function of t and the coil’s 
current ib. During the time interval of elongation L, the 
friction element 5 is in contact with the disk, and the disk 
starts rotating (see Fig. 1 and Fig. 2).  Conversely, during 
the contraction interval, L and the friction element does 
not touch the disk until L becomes equal to zero. The 
process is repetitive. The idealized characteristic (i.e. lin-
earized for intervals) approximates the time variation of 
the developed torque M presented in Fig. 4 [6-12].  
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Fig. 3.The Magnetostrictive characteristic for the material (Terfenol D 
or GalFeNol)  

 
The torque  M applied to the disk is directly proptional to 
the effort F and defined by the equation (5): 
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The term rc represents the radius of the fictitious circle 
containing the point of contact and centered in the center 
of cross-section of the mobile disk’s shaft, α0 is the angle 
between the vector representing the effort F applied to the 
actuator and the horizontal of the disk.  

A. Trapezoidal Torque Model 
 
For a full cycle T, (6) define the developed torque. 
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Because the torque has a periodical time variation, a re-
duced Fourier series of sine functions is necessary to ex-
press it (7):  
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(7) 

The term M0 represents the average value of the magne-
tostrictive torque and is practically responsible for the 
energy conversion from magnetic into mechanical. The 
terms present in the infinite series are torque harmonics. 
For steady state, these harmonics have no contribution to 
the energy conversion. In the equation (8), one can re-
mark the equivalence between the work performed by the 
magnetostrictive and the work performed by the mobile 
disk. The equality is valid for the reference frequency f0 
as well as for any frequency f from the domain of interest. 
The torque is frequency dependent (see Fig. 5). 

 
Fig. 4.The time variation of the magnetostrictive torque M 
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Notations are consistent with Fig. 5. There is no expres-
sion linking the rotational speed to the frequency avail-
able in the mathematical model (8). However, one can 
determine a torque – frequency dependency. Considering 
the inductor current ib at the frequencies f0 (reference fre-
quency) and f (any frequency from the domain of inter-
est), the torque – frequency function appears in Fig. 5. 

 
                          a)                                                                  b) 
Fig. 5. a) The torque M represented as time dependent at frequency f0 = 
1 and a cycle with duration T0 and b) The torque M represented as time 
dependent at frequency f =nf0 and a cycle with duration T = T0/n. 

 
The following equations described in (9) are valid: 
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All the calculations from (9), performed for the duration 
of a full cycle T0 correspond to reference frequency f0 and 
they count on the properties (10a, b) of defined integrals. 
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From the final form of the equation (9), one can deduce 
relationship (11) as dependency between the magne-
tostrictive torque Mf   developed at frequency f and the 
torque M1 developed at the reference frequency f0 = 1 Hz. 
 

1MfM
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According to (11) the torque Mf developed for any fre-
quency of the inductor current is proportional to the fre-
quency. This proportionality between the developed 
torque and frequency is consistent for any type time 
variation of the torque within a cycle, if the variation is 
the same within every cycle of operation. The rotor dy-
namics given by the system (12a-d) is: 
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fa MkM   (12,b) 
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 DM D  (12,d) 

 
In the equations (12a-d), the resultant torque opposed to 
the rotation Mr is composed from a true load torque Ms 
(main component) and some additional components like 
friction and parasitic torques. The following notations 

 



 

clarify the equations (12a-d). J is the moment of inertia of 
the mobile part. MD represents the torque due to viscosity 
of the bearings. Ms – the true load torque required by the 
driven mechanism; Ma – the active (driving) torque (i.e. 
the average value of M0, whereas neglecting the harmon-
ics, according to (7)), and kv is a factor used for calculat-
ing the average value of the developed torque. The me-
chanical characteristic of the rotary magnetostrictive mo-
tor namely n =f(Ms), resulted directly from the equation 
(12a). In conditions of operating at steady state character-
ized by constant angular speed =const. and constant 
load torque Ms = const. and in presence of viscosity in the 
bearings D ≠ 0 is obtained:   
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(13) 

 
If the viscosity of the bearings is negligible, then D = 0 
and the load torque is dependent upon the angular speed 
with a relationship   Ms = KΩ, is found that:
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The 2 cases mentioned by (13) and (14) confirm that the 
rotational speed is frequency dependent. The equations 
detailing this dependency are different and determined by 
how each of the terms the opposed torque Mr depends 
upon the angular speed Ω (or rotational speed n). 

B. Sinusoidal Torque Model 
The torque has a similar time variation as the elongation 
(see Fig. 6).  
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Such a periodical function, decomposed in Fourier series 
appears in (16).  
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It is convenient to consider the maximum value of the 
function M(t) equal to 1. Therefore, the results following 
simulation can pe  peroperly extrapolated.   M0 represents 
the average value M(t), whereas Mkm, respectively αk are 
the magnitudes and the phase angles of the harmonics of 
the Fourier decomposition (16). The rotational motion 
equation written at constant angular speed is (17): 
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(17) 

The term J is the moment of inertia of the system in rota-
tional motion.  Analyzing equation (16), one can remark 
that for such a torque, the magnetostrictive motor cannot 
operate unloaded, whereas the rotational speed increases 
linearly in time. This fact id due to the lack of correlation 
between the value M0 and the rotational speed n. 
Consequently, the mechanical characteristic may not be 
precisely defined for certain values of the load torque Ms. 
 
 

 
Fig. 6. Torque Ma represented as a periodical function of time. 

III. EFFICIENT  ENERGY CONVERSION 

For analyzing the process of energy conversion, one can 
consider to start from the magnetostrictive characteristic, 
defined as the absolute elongation ΔL (or per unit one λ = 
ΔL/L) of the specified material as a function of the ap-
plied magnetic field strength H (see Fig. 3). There are 
three points of interest on the linear (A1A2) section of the 
magnetostrictive characteristic, marked as A1, A, A2. The 
point A represents the half of the linear section on the 
magnetostrictive characteristic. The efficiency evaluation 
of the entire energy conversion requires measuring or 
estimating the mechanical work consumed during the 
operation by the actuator. Within the linear section of the 
magnetostrictive characteristic, the elementary mechani-
cal work corresponding to a single elongation is (18):    
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(18) 

 
The equation (18) emphasizes the strong dependency of 
the work Lm on the square of the elongation L. A large 
elongation is the main requirement requested by an effi-
cient energy conversion. Due to the alternating nature of 
the inductor current ib, both alternations of the magnetic 
field must be kept within the linear portion of the magne-
tostrictive characteristic. This condition shows a need for 
accurate determination of the point A through calculations 
followed by confirmation through adequate experiments. 
This condition imposes the utilization of the linear por-

 



 

tion of the magnetostrictive characteristic to its entire 
extent. 

A. Magnetic Permeances of the Actuator 

 
Fig. 7 displays a cross-section view of the actuator and its 
principal constructive elements. Because the permanent 
magnet strongly influences the actuator’s performance, the 
determination of the “operation point” on the magnetic 
characteristic is of great interest. The main characteristics 
of a permanent magnet are the demagnetizing characteris-
tic and its geometry. To associate an equivalent magnetic 
circuit to a permanent magnet is a challenging task [1-4, 
7-9]. The demagnetizing characteristic belongs to the 
second quadrant of the B-H (B  0, H  0) plane, where 
Br is the residual flux density and Hc is the intensity of the 
coercive magnetic field (see Fig. 8).  
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Fig. 7. Actuator construction (vertical cross-section): 1- rod made of 
terfenol; 2 – permanent magnet; 3 –inductor; 4 – ferromagnetic flanges 
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Fig.8. 1 – demagnetizing curve; 2 – returning curve; 2’- returning line; 3 
– tangent line to demagnetizing curve at the point Ar 

Analyzing Fig. 8, let us assume that the operation point of 
actuator’s permanent magnet is P. If the magnetic flux 
density increases, the operating point P will follow the 
curve 2 instead of characteristic 1, drawing a local, nar-
row hysteresis cycle. The straight line 2’, named restoring 
line, approximates this local hysteresis cycle. The inter-
sections of the restoring line with the horizontal, respec-
tively vertical axes determine the values -H0 on the axis 
of the magnetic field strength, respectively B0 on the axis 
of the magnetic flux density. Whereas a permanent mag-
net belongs to a magnetic circuit, has three characteris-
tics: magnetomotive force 0, leakage reluctance Rmσ and 
the reluctance Rm of the magnetizing flux path along the 
permanent magnet (see Fig. 7 and Fig. 8 for notations). 
 

mLH00   (19) 

 mmmm SLR   (20) 

When excited with current ib, the inductor (see Fig. 7, 
component 3) produces a magnetic field, which is inter-
acting with the magnetic field produced by the permanent 
magnet. Despite the sinusoidal time variation of the mag-
netic flux density B(t), the magnetic field strength H(t) is 
not. This fact is due to hysteresis. The magnetic field 
strength H(t)  can be decomposed using Fourier series, 
keeping only the fundamental harmonic, namely H1(t). 
The fundamental harmonic H1(t) leads B(t) with an angle 
1. 
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Sinusoidal variables B1 and H1 converted into complex 
form appear in equations (22). In this way, one can intro-
duce the complex permeability  as subsequent:  
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Removing the time from the equations (21), one can ob-
tain the equations (23), after brief calculations:  
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The hysteresis cycle of a magnetic material can be de-
composed according to (22) into two components. 
There are two different relationships (22, b, c) between 
magnetic flux density and magnetic field strength. The 
component B’1 corresponds to reversible magnetizing 
processes, while B’’1 corresponds to the irreversible mag-
netizing ones. The latter is an ellipse with axes overlap-

 



 

ping the axes of coordinates (see Fig. 9). The description 
of the ellipse relies in the following equations (24): 
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From equations (24), one can determine the relative per-
meability r’ and r

” (see Fig. 9).  
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Fig.9. a) “Ellipse shaped” hysteresis cycle and its components; b) Com-
plex permeability representation. 

 
The real part of the complex permeability is equal to the 
slope of the line B1=’ H1. The ellipse (see Fig. 9) inter-
sects the rectangular axes of coordinates in two points. A 
straight line joining the two points (- µ0Hm1, 0), (0, ’’ 
Hm1) has slope equal to ’’. The specific hysteresis loss 
(W/m2), for an elliptic shaped cycle pH calculated at fre-
quency f is: 
 

111 sin  imimHi BHfp   (25) 

The complex magnetic reluctance of an element with the 
length li and cross-section Si expressed (26), is: 
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Following the decomposition of the hysteresis cycle, the 
two reluctances calculated with (26) will be referred as 
“conservative reluctance” (Rc) and “dissipative reluc-
tance” (Rd) [10]. In Fig. 10, one can visualize the equiva-
lent magnetic circuit of the actuator from figure 7. 
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Fig.10. Equivalent magnetic circuit of the actuator (figure 6) including 
the magnetomotive forces 0 and d. 

The equivalent schematic of a magnetic circuit becomes 
very useful for the fulfillment of the two outcomes re-
quired by the optimal operation of a magnetostrictive 
motor: the operating point of the permanent magnet, re-
spectively the magnetomotive force of the inductor. The 
equivalent reluctance of the magnet circuit from Fig. 10, 
in case of 0 ≠ 0 and d = 0 is (27): 
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For the case d ≠ 0, and 0 = 0 the equivalent reluctance 
is (28): 
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B. Magnetomotive force of the Actuator 

The magnetomotive force of the inductor d must be able 
to produce a magnetic field of a certain amplitude Hm = 
H1 - HAm (see Fig. 11a), which sweeps the terfenol made 
rod. From the equivalent magnet circuit one can calculate 
the magnetomotive force as (29): 
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In equation (29), the terms F and SF are the permeability, 
respectively the cross-section of the terfenol made bar. 
The magnetomotive force wIm  depends on power supply 
and the geometry of the main actuator components 
(permanent magnet, terfenol rod), This fact drives the 
calculation of the number of turns w and the maximum 
current of the inductor Im. The thermal stress evaluation 
of the inductor must validate the final solution for the 
acuator configuration. The inductor must have taps to be 

 



 

able to modify the magnetomotive force d (i.e. one for 
the magnetomotive force given by (29)). 

IV. OPERATING POINT OF PERMANENT MAGNET 

The operating point of the permanent magnet, marked as 
Am (see Fig. 11a) on the returning line, gave the opportu-
nity to select the best candidate from the cluster of avail-
able permanent magnets. The chosen one must have the 
closest demagnetizing curve to the theoretically deter-
mined returning line. The value of the magnetic field 
strength HAm, corresponding to the point Am from the re-
turning line must match the value of the magnetic field 
strength HA of the magnetostrictive characteristic (see 
Fig. 11b), i.e. HAm= HA.  The value of the coercive mag-
netic field strength Hc must be large enough. In such a 
case, the segment P2P3 belongs to the confined space bor-
dered by the curve and the axes of coordinates.  
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Fig. 11. Coordination between the magnetic field strength values HAm 
and HA. a) Examples of positioning for the points Am and A, 1 – Load 
characteristic (straight line), 2 – returning line; b) Terfenol Characteris-
tic; c) Time variation of the inductor current; d) Time variation of  for 
HAm equal to HA; e) Time variation of  for HAm  HA; f) Time variation 
of   for HAm  HA.  
 
Three cases represented in Fig. 11d, Fig. 11e and Fig.  11f 
recommend an experimental procedure to determine the 
position applied to the points Am and A. The procedure 
requires the recording of time variation for the quantity, 
followed by a thorough analysis of the waveform. In the 
ideal scenario, the value of the magnetic field strength 
HAm must be the same as HA. The fine-tuning imposes the 
presence of an adjustable air gap between the flange and 
the permanent magnet [10, 11]. 

V. SIMULATION RESULTS  

All of the performed numerical simulations, according the 
dynamical rotational motion equation (12), using the af-
terwards notations, address two particular cases: 
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Fig. 12. Simulation results for: m=2, D=0.04, k=0.03, J=0.015kgm2 

 
Case b) (see Fig. 13 and Fig. 14) 

 

 

 













































 















 









2045.0,03.0,04.0,2

,

12,
6

7
2,5.0

6

7
2,2,0

,

kgmJKDm

kktNm

kkt

MDM

MDkM
dt

d
JMM

dt

d
J

SD

Sfra



  

 



 

 
Fig. 13. Developed torque Ma=Ma(ωt), and a step shaped load torque 
Ms=Ms(ωt) 
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Fig. 14. Simulation results for: m=2, D=0.04, k=0.03, J=0.045kgm2 

 
Finite Fourier series decomposition applied to the active 
torque Ma, true load torque Ms, respectively viscosity 
torque MD, delivered the harmonics up to 10th order (see 
Fig. 15, Fig. 16, and Fig. 17). 
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Fig.15. Active Torque Spectrum Ma 
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Fig.16. Load Torque Ms 
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Fig. 17.  Difference torque Ma-Ms 

 

Fig. 18, Fig. 19 and Fig. 20 summarize the dependencies 
between the torques, harmonic and time into surfaces. 
  

 
 

Fig. 18. Active torque magnitude-harmonic-time dependency 

 
 

Fig. 19. Load torque magnitude-harmonic-time dependency 
 

 
 

Fig. 20. Difference torque magnitude-harmonic-time dependency 
 

 



 

VI. EXPERIMENTAL RESULTS  

The experimental tests involved two versions of rotary 
magnetostrictive motor. In the first configuration of the 
motor (Fig. 21), the active force is applied on the disk 
surface. 

 
 

Fig.21.Rotary magnetostrictive motor-first version. 
 

In the second variant, the active force applies to the edge 
of the disk (Fig.  22).  
 

 
Fig.22. Rotary magnetostrictive motor-second version.  
 
The braking device represents the main difference.  

TABLE I. TORQUE VALUES 

Calculated values versus Measured Values 

No. Frequency 
[Hz] 

Calculated Torque 
[Nm] 

Measured 
Torque  
[Nm] 

1 50 11.010-3 10.010-3 

2 80 17.610-3 15.510-3 
3 100 22.010-3 21.310-3 
4 120 26.410-3 26.010-3 
5 150 33.010-3 30.010-3 

 
The experiments followed two objectives: proportionality 
between the torque and current frequency (confirmed by 
data from Table I, for an inductor current equal to 2A), 
and the position of the operating point. Measured values 
were close to calculations. The operating point of the 
permanent magnet matched the middle point of the linear 
portion of the magnetostrictive characteristic. For assess-
ment, the objectives required two independent experi-
ments. The first one required the recording of the time 
variation of the elongation ΔL. The second experiment 
required a primary DC energization of the inductor, fol-
lowed by another one of opposite DC polarity. Measuring 
at maximum allowed current (thermal considerations) 
was essential for maximizing the capture of linear portion 
from the magnetostrictive characteristic (see Table II for 
data). 

TABLE II. ELONGANTION VERSUS CURRENT 

Measured Values 
No. 

Current [A] Elongation [μm] 

1 1.10 12.0 
2 1.80 18.0 
3 2.25 21.0 
4 3.00 25.0 
5 -1.10 9.8 
6 -1.70 17.1 
7 -2.18 20.4 
8 -3.00 23.8 

 

VII. CONCLUSIONS 

The actuator represents the most important part in every 
magnetostrictive type of device, triggering most of re-
search activity towards its design, construction and the 
operation. Here, a special attention for studying the de-
veloped torque emphasized the factors and elements that 
contribute to performance enhancement. Once estimated, 
the equivalent magnetic reluctance determined the operat-
ing point from the restoring line of permanent magnet. 
The real hysteresis cycle is equivalent to two fictitious 
cycles, one drawn by a straight line, the other one by an 
ellipse. The latter one has its extremities placed on the 
coordinate axes of the B-H plane. From the hysteresis 
equivalence, two remarkable magnetic reluctances re-
sulted: conservative and dissipative. A performant opera-
tion requires a certain magnitude for the magnetic field 
strength of the permanent magnet. This magnitude must 
be equal to the magnitude of the magnetic field recorded 
in the middle of the linear portion of the elongation char-
acteristic of the given magnetostrictive material. Accu-
racy in calculation of magnetic reluctance is necessary. 
The dissipative reluctances for the ferromagnetic parts 
must account, whereas the frequency exceeds certain lim-
its. Following theoretical considerations, the experimental 
confirmation of the permanent magnet operating point 
within linear portion of the magnetostrictive characteris-
tic, respectively ΔL - f(H) is necessary. The elongation 
variation in time, was recorded for a given inductor alter-
native current, both alternations being assessed against 
symmetry criteria. If they are symmetrical, one can con-
clude that the operating point is in the middle of the linear 
portion of the magnetostrictive characteristic. The other 
option was to supply the inductor with direct current, fol-
lowed by direct current of opposite polarity. If the meas-
ured elongations of the magnetostrictive material, re-
corded for both direct current polarities are equal, one can 
conclude that the operating point is in the middle of the 
linear portion of the magnetostrictive characteristic. Data 
tables show a good correspondence between theoretical 
and experimental results. 
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