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Abstract - The paper deals with the evaluation of root mean 
square deviations and maximum absolute relative errors 
associated to the decomposition followed by recomposition 
based on Wavelet Packet Transform (WPT) of signals pol-
luted with harmonics. Subtrees associated to sets of harmon-
ics presenting practical interest for industrial applications 
are addressed. The study uses artificial signals generated 
through the superposition of perfect sinusoids with pairs of 
harmonics which proved to be related in an almost exclusive 
manner to pairs of nodes from the bottom level of a WPT 
tree. 4 parameters had to be considered when determining 
the maximum and minimum values of errors for each set: 
the clustered harmonics’ magnitudes and their phase-shifts 
relative to the component of fundamental frequency. The 
decomposition/recomposition are time-efficient due to an 
original system of flags labeling each node from the WPT 
tree. For each analyzed set of harmonics, 3d graphical rep-
resentation of minimum and maximum errors along with 
the associated 3d graphical representation of the phase-
shifts are provided. At the same time, per set limits of errors 
ranges were established and discussed while specific pat-
terns were deduced for the context in which extreme errors 
appear (phase-shifts and harmonic magnitudes). The results 
were commented, and conclusions were drawn. 

Cuvinte cheie: calitatea puterii, analiză Wavelet cu arbori 
binari, estimarea erorilor. analiza asistata de calculator. 

Keywords: power quality, wavelet analysis with binary trees, 
errors estimation, computer aided analysis.   

I. INTRODUCTION 

Defining the best signal analysis method is a never-
ending battle. Each of the methods has its own virtues and 
flaws which make their applicability limited to certain 
cases. Fast Fourier Transform (FFT) is a very popular 
method because it gives full harmonic spectrum, has a 
short runtime, and has low computational effort. But this 
method is more precise when analyzing signals that have 
stationary nature. Because FFT assumes the asymmetry 
between half-periods of a signal, it shows poor results 
when computing signals of non-stationary nature. 

Short-Time Fourier Transform (STFT) is another popu-
lar and fast method that uses a window for diving a signal 
into smaller parts, thus making the analysis more precise. 
On the other hand, the window length is fixed so the reso-

lution will be constant for all frequencies. Therefore the 
analysis with STFT will provide good results for either 
low-frequency (LF) or high-frequency (HF) spectrum, but 
not for both. 

Wigner-Ville Distribution (WVD) and Pseudo-WVD 
are methods that are both bilinear in nature and artificial 
cross terms appear in the decomposition results rendering 
the feature interpretation problematic. 

For all the above-mentioned methods the common flaw 
is that they are non-reversible [1]. Many of these problems 
can be solved using Wavelet transform (WT). Wavelet 
transform is considered to be a significant breakthrough in 
mathematical analysis. It can be applied to various fields. 
For example, signal processing, image processing, pattern 
recognition, speech analysis and many applications could 
introduce wavelet analysis [2]. It is a timescale transform 
that uses a variable-length window so it provides good 
resolution for both LF and HF spectrum, while preserving 
both time and frequency information. The authors have 
previously studied a specific type of WT called Wavelet 
Packet Transform (WPT) that was proposed in 1992 [3]. 
WPT provides full harmonic spectrum but suffers from 
decimation phenomenon [4]-[7]. Detailed analysis of 
wavelet binary tree shown the best parameters (number of 
levels, wavelet mother, filter length) when applying WT. 

The authors extensively studied a specific case of a 
wavelet tree with seven levels (T7) that uses a wavelet 
mother from Daubechies family and filter length of 28 
(“db14”) [6]. One of the important conclusions was that 
nodes from the bottom level of the wavelet tree exhibits 
cluster patterns [7]-[10]. This means that nodes can be 
grouped in clusters of 2, 4 or 8 nodes where each group is 
affected by 2, 4 and 8 harmonics respectively. 

II. NODES-HARMONICS PAIRING PATTERNS AND RUN-TIME 
SAVING DECOMPOSITIONS AND RECOMPOSITIONS RELYING ON 

WPT TRESS 

The Wavelet binary tree (T7) used in this paper was 
tested in many different operational contexts [6…9]. It has 
the following characteristics: 7 levels of decomposition, 
Daubechies wavelet mother with filters of 28 components 
(called “db14” in Matlab) and 512 components in the sig-
nal hosted by the root node. 

The artificial test signals used for the decomposi-
tion/recomposition relying on T7 were generated by  
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TABLE I. 
CHARACTERISTICS OF HARMONIC MAGNITUDES USED FOR ANALYSIS 

 
Parameters for harmonic 

magnitudes variation 
Harmonic order 

3 5 7 ≥9 
Step [%] 2 1 1 0.5 
Max [%] 20 10 10 5 

 
superposing a perfect sinusoid with the maxim magnitude 
of 800 and frequency of 50 Hz with 2 harmonic signals, 
characterized by their harmonic orders (H1 and H2), mag-
nitudes (M1 and M2) and phase-shifts (phi1 and phi2).  

phi1 and phi2 were cycled within the range [-π,π] with 
the step π/6 whilst M1 and M2 were cycled considering 
11 equidistant values such as to cover ranges from 0 to the 
maximum value (weight from the perfect sinusoid magni-
tude) as mentioned in Table I. 

Clustering properties of T7 trees [8] allowed the authors 
to reconstruct certain harmonic components associated to 
clustered harmonics polluting the decomposed signal. The 
goal is to isolate only certain clusters of harmonics that 
affect the associated clustered of nodes in an almost ex-
clusive manner [10] and to analyze how those clusters 
affect the accuracy of wavelet decomposition (WD) and 
recomposition by varying their phase shifts and magni-
tudes. Table II shows the 4 sets of harmonic orders (HO) 
that were used for this analysis as well as the nodes that 
were affected by those sets of harmonics. The dominant 
harmonics and nodes [7] are represented with bold fonts.  

The WPT recomposition was made in the following 
way [7]: 

- Only the first 32 “terminal nodes” (nodes from the 7-
th level) were considered because only the nodes from that 
range are affected by HOs from the studied sets; 

- Those nodes were associated with flags whose values 
are 0 or 1 whether the nodes were affected by the specific 
HO or not, respectively; 

- In case the terminal node has a value of 1 for a certain 
set of HOs it is considered in the decomposition, and op-
posite in case it has 0; 

- Flags were given to the nodes from the other levels in 
upwards direction of the wavelet tree depending on the 
flags of the nodes in the adjacent lower level. For exam-
ple, if in level j: 
o Both nodes 2 X (k-1) and 2 X k have a value 1, 

then the node k from level j-1 that decomposes 
into nodes 2 X (k-1) and 2 X k in level 7 will have 
a flag value of 3 - full decomposition; 

o Node 2 X (k-1) has a value of 1 and node 2 X k 
has a value of 0, then the flag value is 2 - left 
decomposition; 

 
TABLE II. 

PROPERTIES OF ANALYZED CLUSTERS OF NODES AND HARMONICS  
 

Properties Set ID 
1 2 3 4 

Harmonic orders 3,5 7,9 15,17 31,33 
Nodes 2,4 3,7 5,13 9,25 

Weight of dominant har-
monic energy in the domi-

nant node energy 
0.9824 0.8487 0.6964 0.6012 

 

o Node 2 X (k-1) has a value of 0 and node 2 X k 
has a value of 1, then the flag value is 1 - right 
decomposition; 

o  Both nodes 2 X (k-1) and 2 X k have a value of 
0, then there will be no decomposition. 

During recompositions a similar technique (flags and 
simplified recomposition functions) was successfully used 
to save runtime.  

The goal of the decomposition/recomposition is to in-
spect spectral leakages. In other words, even though the 
WD revealed clustering pattern of nodes that contain cer-
tain HOs, not all the weights of harmonics are distributed 
between those clusters. The analysis will reveal how much 
do parameters of HOs affect the spectral leakages and to 
determine for which parameters does WD perform the 
best or the worst.  

The difference D between the synthetically generated 
harmonic signal yh and the harmonic signal (yhr) obtained 
through WPT recomposition was computed for every set 
and every combination of the 4 parameters (harmonic 
weights and phase-shifts). Afterward maximum absolute 
relative percentage errors (MAR) were computed as: 
max(abs(D))/max(abs(yh))*100.  

Another index of accuracy that was used was the Root 
Mean Square Deviation (RMSd) , computed with the for-
mula: 
 

 
(1) 

 
In the following sections the phase-shifts may be ex-

pressed as IDs (e.g. 1 for - π, 2 for - π + π/6 a.s.o.). Also, 
the harmonic magnitudes may be expressed as IDs (e.g. 1 
for M1=0, 2 for M1=step, …, 11 for the maximum value 
of M1), according to Table I. 

Examples of artificial signals, results of decomposi-
tion/recomposition and curves of differences (that are ac-
tually instantaneous errors) obtained as yh-yhr, are depict-
ed by Figs. 1 and 2.  

 

 
Fig. 1. Example of polluted signal before decomposition (left), harmon-

ic signals before and after recomposition (middle) and the difference 
between the initial and recovered harmonic signals (right) for the 4-th 

set.  
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Fig. 2. Example of polluted signal before decomposition (left), harmon-

ic signals before and after recomposition (middle) and the difference 
between the initial and recovered harmonic signals (right) for the 1-st 

set.  

III. STUDY OF ROOT MEAN SQUARE DEVIATIONS  

The minimum and maximum values of RMSd were 
computed, graphically represented and interpreted for 
each of the 4 sets of 2 harmonics. Surfaces (S1 and S2) 
were built considering on the horizontal axis Ox the 11 
values of the dominant harmonic magnitudes (M1) and on 
Oy the 11 values of the paired harmonic magnitudes (M2). 
M1 was allways associated to the dominant harmonic. S1 
corresponds to minimum values whilst S2 corresponds to 
maximum values of RMSd, the difference between the 
same (x,y) values from them being provided by different 
phase-shifts phi1 and phi2.  

The phase shifts corresponding to S1 and S2 were als 
represented and interpreted. 

A. Study of extreme values of RMSd 

When none of the paired harmonics is polluting the test 
signal, constant values were obtained for RMSd , as fol-
lows: 1.7 for the 1-st set, 0.65 for the 2-nd, 0.27 for the 3-
rd and 0.13 for the 4-th set respectively. These values cor-
respond to residual errors, are specific to the non-ideal 
feature of the wavelet filter and are highly acceptable as 
related to the maximum value of the fundamental compo-
nent (they represent at most 0.2% from it). 

The values computed for RMSd when only the domi-
nant harmonic is 0 whilst its pair in the set is non-zero 
revealed the influence of phase-shifts. Table III gathers 
the extreme values on each surface of extreme values.  

Table IV gathers the counterpart of the data from Table 
III, but for the case when only the dominant harmonic 
within the analyzed sets is non-zero .  The influence of 
phase-shifts was revealed again.  

 

TABLE III. 
EXTREME VALUES OF RMSD WHEN THE DOMINANT HARMONIC IS ZERO AND THE 

SECONDARY HARMONIC IS NON-ZERO  
 

Set ID Minimum RMSd Maximum RMSd 
S1 S2 S1 S2 

1 1.708 1.71 2.33 2.43 
2 0.6567 0.6584 0.86 0.99 
3 0.28 0.3 0.9 1.33 
4 0.21 0.26 1.71 2.27 

 
 

TABLE IV. 
EXTREME VALUES OF RMSD WHEN THE DOMINANT HARMONIC IS NON-ZERO AND THE 

SECONDARY HARMONIC IS ZERO  
 

Set ID Minimum RMSd Maximum RMSd 
S1 S2 S1 S2 

1 1.7027 1.7028 1.88 1.9 
2 0.66 0.68 0.98 1.8 
3 0.27 0.33 0.79 2.02 
4 0.22 0.3 1.76 2.67 

 
For both Tables III and IV, the indices of magnitudes 

within the analyzed set of harmonics were as follows: 2 
for the minimum values and 11 for the maximum values. 
Therefore one can conclude that when a single harmonic 
from an analyzed set is non-zero, the RMSd is increasing 
with the value of that harmonic magnitude. 

The extreme values reached by RMSd when both 
harmonics within the analyzed sets were non-zero are 
gathered by Table V.  

The minimum values for the RMSd were reached for all 
sets for the combination of indices associated to harmonic 
magnitudes equal to (2,2) within each set. It means that 
the lowest values for RMSd in this case are associated to 
the lowest non-zero magnitudes of paired harmonics.  

As for the maximum  values for the RMSd, two 
possible combinations of indices associated to harmonic 
magnitudes were identified. The 1-st combination, 
corresponding to values marked with star is (11,2) and its 
meaning is „highest magnitude for the dominant harmonic 
combined with lowest magnitude for the paired harmonic 
order”. The 2-nd one is (11,11) and it means „highest 
magnitudes for both harmonic orders”.  

The maximum RMSd as compared to the highest value 
of the harmonic magnitude (11-th from the set) is equal to 
5.72% and is recorded for the 4-th set, which is known as 
having the worst filtering propertie of all sets (lowest 
weight of energy in the dominant node). Again one can 
consider that highly acceptable errors are generated by the 
analyzed original algorithm. 

B. Study of phase-shifts associated to extreme values of RMSd 

Table VI gathers the values of phi1 and phi2 associated 
to the cases when one of the harmonics in the set is zero 
(when the associated harmonic of a phase-shift was zero, 
the symbol „-" was used).  

The analysis of these results revealed that: 
- identical values but with oppposite signs were obtained 

for the sets with IDs 1 and 4;  
- at the second set, 2 identical values but with oppposite 

signs can appear for S1 for different phase-shifts; 
- at the 3-rd set, the differences (S1 vs S2) between the 

counterpart phase-shifts are always π/2. 

TABLE V. 
EXTREME VALUES FOR RMSD WHEN BOTH HARMONICS ARE NON-ZERO 

 
Set ID Minimum RMSd Maximum RMSd 

S1 S2 S1 S2 
1 1.708 1.7115 2.34 2.76 
2 0.66 0.68 0.98* 1.8 
3 0.27 0.33 0.79* 2.02 
4 0.16 0.47 1.62* 4.58 
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TABLE VI. 
VALUES OF PHASE-SHIFTS ASSOCIATED TO EXTREME VALUES OF RMSD WHEN ONLY ONE OF 

THE PAIRED HARMONICS IS ZERO 
 

Set 
ID 

Condition phi1 phi2 
S1 S2 S1 S2 

1 M1=0 - - - π/2 0 
M2=0 - π/2 0 - - 

2 M1=0 - - - π  or π - π 
M2=0 - π  or π - π/2 - - 

3 M1=0 - - −2π/3 - π/6 
M2=0 5 π/6 π/3 - - 

4 M1=0 - - π/2 0 
M2=0 π/2 0 - - 

 
A more detailed study was needed for the case when 

both harmonic orders are non-zero and its results are 
presented below. 

 

1) First set 
Fig. 3 depicts S1 (left), S2 (middle) and S1-S2 (rigth) 

for the 1-st set. 
Fig. 4 depicts the associated phase-shifts for S1 (top) 

and S2 (bottom) . Left – phi1, middle – phi2 and right , 
phi1-phi2 for the 1-st set. 

phi1 for S1 is usually equal to 2 when M1>=M2, with 
few exceptions and 3 otherwise. A sort of separation 
„above and below” the main diagonal of the matrix in 
which the magnitudes of dominant harmonic determine 
the raws and those of the paired harmonic determine the 
columns can be noticed, as in Table VII. 

Phi2 for S1 is usually equal to 8 below the main diago-
nal (M1>M2) , equal to 9 on the main diagonal of the ma-
trix similar to that from Table VII or in its strict vicinity 
and is 10 over the main diagonal , with few exceptions. 

 
 

 
Fig. 3 RMSd deviation of S1 (left), S2 (middle) and S1-S2 (rigth) for the 1-st set. 

 
Fig. 4. Associated phase-shifts for S1 (top) and S2 (bottom) . Left – phi1, middle phi2 and right , phi1-phi2. 1-st set. 
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TABLE VII. 
IDENTIFIERS OF PHI1 FOR S1, 1-ST SET 

 
Dominant 
harmonic 

 
Secondary 
harmonic 

1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 1 1 1 1 
2 4 2 3 3 3 3 3 3 3 3 3 
3 4 2 2 3 3 3 3 3 3 3 3 
4 4 2 2 2 3 3 3 3 3 3 3 
5 4 2 2 2 2 2 3 3 3 3 3 
6 4 2 2 2 2 2 2 3 3 3 3 
7 4 2 2 2 2 2 2 2 3 3 3 
8 4 2 2 2 2 2 2 2 2 3 3 
9 4 3 2 2 2 2 2 2 2 2 2 

10 4 3 2 2 2 2 2 2 2 2 2 
11 4 3 2 2 2 2 2 2 2 2 2 

 
As for the difference (phi1-phi2) associated to S1, only 

2 values were noticed: 1 below the main diagonal and -1 
(corresponding to the value - π - π /6) over it. 

Usually when M1>M2, the phase-shift between H1 and 
H2 (phi1-phi2) is - π - π /6 and otherwise is - π + π /6. 

Both phase-shifts had the value 7 over all S2 and there-
fore (ph1-phi2) is always 0. 

 
2) Second set 
Fig. 5 depicts the S1, S2 and S1-S2 surfaces whilst Fig. 

6 depicts the corresponding surfaces with phase-shifts for 
the 2-nd set. 

For S1, phi1 is usually 7 above the main diagonal 
(fewer values) and 1 or 13 nearby and below it. On the 
contrary, phi1 is usually 7 below and nearby the main 
diagonal and 1 or 13 above it (fewer values). 

It is why (phi1-phi2) is mapped either in - π or in π for 
S1. 

Both phase-shifts had the value 4 over all S2 and 
therefore the phase-shift (ph1-phi2) is allways 0. 

3) Third set 
Fig. 7 depicts the S1, S2 and S1-S2 surfaces whilst Fig. 

8 depicts the corresponding surfaces with phase-shifts for 
the 3-rd set. 

phi1 for S1 can take 3 values: 9 above the main diago-
nal, 11 on it and close to it and 12 below  it. 

phi2 for S1 can take 3 values: 3 above the main diago-
nal, 4 on it and close to it and 6 below  it. 

Under these circumstances, most of the values of (phi1-
phi2) for S1 are equal to π and a small number of them is 
π + π /6 . 

For S2, phi1 takes the value 6 over the main diagonal, 
more values 7 nearby it, one value 8 near the main diago-
nal and close to it and few values 9 under the main diago-
nal.  

 

 
Fig. 5. RMSd deviation of S1 (left), S2 (middle) and S1-S2 (rigth) for the 2-nd set. 

 
Fig. 6. Associated phase-shifts for S1 for RMSd. (top) and S2 (bottom) . Left – phi1, middle phi2 and right , phi1-phi2. 2-nd set. 
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diagonal, 7 on it and nearby it, 4 values 8 for high values 
of M1 and small values of M2 and few values of 9 nearby 
the main diagonal, under it for high values of M1. 

Accordingly, (phi1-phi2) for S2 has many values of 0 
far from the main diagonal and the remaining ones are 
associated to the index 8 (which is associated to π/6). 

4) Fourth Set  
Fig. 9 depicts the S1, S2 and S1-S2 surfaces whilst Fig. 

10 depicts the corresponding surfaces with phase-shifts. 
For S1, phi1 can take 3 values: 4 above the main diagonal, 
many values of 10 and only few values of 11 under the 
main diagonal. For S1, phi2 can take 3 values: 10 above  

the main diagonal, many values of 4 and only few 
values of 5 under the main diagonal. 

Therefore phi1- phi2 can take only 2 values: - π above 
the main diagonal and π under it. 

For S2, phi1 and phi2  have all values equal to 7 and 
therefore (phi1-phi2) is 0. 

IV. STUDY OF MAXIMUM ABSOLUTE RELATIVE ERRORS 

The variation of MAR with harmonic magnitudes and 
phase-shifts is approached in this section.  

 
Fig. 7. RMSd deviation of S1 (left), S2 (middle) and S1-S2 (rigth) for the 3-rd set. 

 
Fig. 8. Associated phase-shifts for RMSd. S1 (top) and S2 (bottom) . Left – phi1, middle phi2 and right , phi1-phi2. 3-rd set. 
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Figs 11...14 depict the surfaces with extreme values of 
MAR for each of the analyzed sets, following the same 
rule applied in the previous section. Left – surface S1 with 
minimum values, middle – surface S2 with maximum 
values and right – difference between S1 and S2. 

The extreme situations (when one of the harmonic from 
set is 0) were analyzed for MAR as well. In this aim, Ta-
ble VIII gathers the extreme  values for MAR when only 
the dominant harmonic is 0. In Table VIII, all minimum 
values were found to be associated to the maximum 
magnitude of the secondary harmonic, except for the value 
17.87% computed for the 4-th set, S1, which is associated 
to the harmonic with ID 4, despite an usual „descending” 
trend of the rest of values observed toward the maximum 
magnitude of the 2nd harmonic.  

On the other hand, the maximum values were found to 
be associated to the minimum magnitude. It means that a 
sort of „reversed dependence” is established in this case 
between the values of MAR and harmonic magnitudes. 

TABLE VIII. 
EXTREME VALUES FOR MAR WHEN ONLY THE DOMINANT HARMONIC IS 0 

 
Set 
ID 

Minimum MAR [%] Maximum MAR [%] 
S1 S2 S1 S2 

1 6.85  9.43 50.44  52.55 
2 7.79  11.02 48.27  55 
3 9.69  14.41 18.53  27.82 
4 17.87  22.51 19.96  27.36 

 
 

 
Fig. 9. RMSd deviation of S1 (left), S2 (middle) and S1-S2 (rigth) for the 4-th set. 

 
Fig. 10. Associated phase-shifts for RMSd. S1 (top) and S2 (bottom) . Left – phi1, middle phi2 and right , phi1-phi2. 4-th set. 
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Fig. 11. Surfaces with extreme values of MAR for the 1st set. S1-left, S2- middle, S1-S2 – right.  

 
Fig. 12. Surfaces with extreme values of MAR for the 2nd set. S1-left, S2- middle, S1-S2 – right.  

 

Fig. 13. Surfaces with extreme values of MAR for the 3rd set. S1-left, S2- middle, S1-S2 – right.  

 

Fig. 14. Surfaces with extreme values of MAR for the 4th set. S1-left, S2- middle, S1-S2 – right.  
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TABLE IX.  
EXTREME VALUES FOR MAR WHEN ONLY THE DOMINANT HARMONIC IS NON-ZERO 

 
Set 
ID 

Minimum MAR [%] Maximum MAR [%] 
S1 S2 S1 S2 

1 2.22 3.94 24.24 26.34 
2 4.56 6.25 24.28 28.31 
3 8.99 11.57 18.6 25.9 
4 19.27 25 20.26 32.5 

 
One can also notice smaller differences between the ex-

treme values of sets with higher IDs (e.g. the difference 
between the minimum and maximum values of the 1-st set 
is higher than 46%, whilst its counterpart for the 4-th set is 
13%). Actually the MARs associated to the smallest 
harmonic magnitudes correspond to small absolute values 
and therefore cannot be considered as significant in these 
contexts.  

Table IX gathers the extreme  values for MAR when 
only the dominant harmonic is non-zero. 

Unlike the conclusions drawn for the values of RMSd, 
in the case of MAR computed when one of the harmonics 
in the pair is 0, the indices of magnitudes within the set of 
the polluting harmonic were as follows: 11 for the mini-
mum values (except for the value 19.27% of S1, 4-th set, 
where the ID is 4) and 2 for the maximum values respec-
tively. Therefore, one can conclude that when a single 
harmonic from an analyzed set is non-zero, the MAR is 
usually decreasing with the value of the harmonic magni-
tude. 

Computations were also made for cases when both 
harmonics in a set are non-zero. The results are gathered 
by Tables X and XI. 

One can conclude based on the data from Tables X and 
XI that when both harmonics from a set act jointly, 
usually the minimum values of MAR are associated to the 
highest magnitudes of the dominant harmonic, except for 
the 4-ts set. On the other hand, the maximum values of 

 
TABLE X.  

MINIMUM VALUES FOR MAR FOR BOTH SURFACES ALONG WITH THE INDICES OF 
MAGNITUDES IN THE SET WHEN BOTH HARMONICS IN THE SET ARE NON-ZERO 

 
 Minimum of MAR – S1 Minimum of MAR – S2 

Set 
ID 

Value 
[%] 

Combination 
of IDs 

Value [%] Combination 
of IDs 

1 1.9 (11,9) 3.87 (11,3) 
2 1.75 (11,11) 5.97 (11,10) 
3 2.64 (11,7) 11.7 (11,2) 
2 5.03 (3,3) 22.58 (2,11) 

 
TABLE XI.  

MAXIMUM VALUES FOR MAR FOR BOTH SURFACES ALONG WITH THE INDICES OF 
MAGNITUDES IN THE SET WHEN BOTH HARMONICS IN THE SET ARE NON-ZERO 

 
 Maximum of MAR – 1-st 

surface 
Maximum of MAR – 2-nd 

surface 
Set 
ID 

Value 
[%] 

Combination of 
IDs 

Value [%] Combination 
of IDs 

1 16.18 (2,2) 19.39  (2,2) 
2 15.89 (2,2) 20.77 (2,2) 
3 8.57 (2,2) 18.58 (2,2) 
4 16.03 (11,2) 25.22 (2,2) 
 
MAR are ussualy associated to the smallest values for 

both harmonic magnitudes, except for the 4-th set, 1-st 
surface. Considering the high and close orders of the 
harmonics clustered in the 4-th set (33-rd harmonic is do-

minant and paired with the 31-rd harmonic), one can 
explain the „special” behavior of the error surfaces for this 
set. 

V. CONCLUSION 

The extended study presented in this paper addresses 
the errors which characterize the determination of 4 types 
of harmonic signals, generated from the following pairs of 
harmonic orders: (3,5), (7,9), (15,17) and (31,33).  

The main conclusions relative to the values of RMSd 
are: 
- when none of the paired harmonics is polluting the test 

signal, small values were obtained for RMSd , repre-
senting at most 0.2%  from the fundamental harmonic;  

- when a single harmonic H from the set is non-zero, 
simulations revealed that the RMSd is increasing with 
the magnitude of H; 

- when the harmonics acted jointly, the lowest values for 
RMSd were associated to the lowest non-zero 
magnitudes of paired harmonics. As for the maximum  
values for the RMSd, two possible combinations of 
indices associated to harmonic magnitudes were 
identified. The 1-st combination can be translated into 
„highest magnitude for the dominant harmonic 
combined with lowest magnitude for the paired 
harmonic order” whilst the 2-nd one has the meaning 
„highest magnitudes for both harmonic orders”.  
Therefore one can consider that highly acceptable 

RMSd errors were generated. 
The main conclusions relative to the phase-shifts asso-

ciated to the extreme values of RMSd when one of the 
harmonics is zero are: 
- identical values but with oppposite signs were obtained 

for the sets with IDs 1 and 4; 
- at the second set, 2 identical values but with oppposite 

signs can appear for S1 for different phase-shifts; 
- at the 3-rd set, the differences (S1 vs S2) between the 

counterpart phase-shifts are always π/2. 
When both harmonics were non-zero, many times a sort 

of separation „above and below” the main diagonal of the 
matrix in which the magnitudes of dominant harmonic 
determine the raws and those of the paired harmonic de-
termine the columns could be noticed with respect to 
phase-shifts. Behavioral patterns could were deduced for 
each set, being more obvious for sets where the weigth of 
the dominant harmonic is closer to 1, thus providing better 
filtering properties. 

The analysis of MAR when a single harmonic is non-
zero revealed that: 
- a sort of „reversed dependence” is established between 

the values of MAR and the harmonic magnitude; 
- smaller differences were noticed between the extreme 

values of sets with higher IDs (e.g. the difference 
between the minimum and maximum values of the 1-st 
set is higher than 46%, whilst its counterpart for the 4-
th set is 13%). Actually the MARs associated to the 
smallest harmonic magnitudes correspond to small ab-
solute values and therefore cannot be considered as 
significant in these contexts;  

- unlike the conclusions drawn for the values of RMSd, 
the MAR is usually decreasing with the value of the 
harmonic magnitude. 

77

                    Annals of the University of Craiova, Electrical Engineering series, No. 46, Issue 1, 2022; ISSN 1842-4805 eISSN 2971-9852



The analysis of MAR when both harmonics were non-
zero revealed that usually the minimum values of MAR 
are associated to the highest magnitudes of the dominant 
harmonic, except for the 4-ts set. On the other hand, the 
maximum values of MAR are usually associated to the 
smallest values for both harmonic magnitudes, except for 
the 4-th set, 1-st surface. 

Future work will be concerned with the study of errors 
accompanying the composition/recomposition focusing on 
clusters of 4 harmonics. 
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