SOLUTIONS FOR POWER SYSTEM STABILITY UNDER RENEWABLES DOMINATED OPERATING CONDITIONS

Lucian Toma, Mihai Sănduleac

University "Politehnica" of Bucharest - Department of Electrical Power Systems

The transition from fossil-based to renewable-based power generation is a challenge for the power system operators in adapting the control system design to ensure the system stability. There are two main changes that occur in power systems by the energy transition, i.e. the unpredictability of the renewable energy sources and the reduced mechanical inertia available in the rotational masses caused by the increased number of generation sources interfaced by power electronics. The problems that may occur spans from very fast phenomena, in the range of milliseconds, e.g. angle and frequency stability, to slow phenomena, in the range of tens of minutes or hours, e.g. load balancing. This keynote speech addresses some solutions that are designed to deal with the mentioned problems, among which the use of battery energy storage systems, the integration of the microgrids and virtual power plants into the frequency control loops, the use of syncrophasors for wide area monitoring and control. Additionally, asynchronously interconnected microgrids are promoted as resilience solutions in local energy communities.

Lucian Toma, PhD lucian.toma@upb.ro

Mihai Sănduleac, PhD mihai.sanduleac@upb.ro

Solutions for power system stability under renewables dominated operating conditions

Lucian Toma, Mihai Sănduleac University "Politehnica" of Bucharest Department of Electrical Power Systems

The International Conference on Applied and Theoretical Electricity (ICATE), 27-29 May 2021

THE ENERGY TRANSITION

THE ENERGY TRANSITION

19th Century

Electrification society "the coal age"

Unsustainable system

Generation and load ate islanded Islanded supply and stochastic load

Fossil fuel based sources, hydro

20th Century

Development and diversification of generation "fossil fuels age"

Unsustainable system

Generation follows the load Integrated network, central generation, predictible stochastic load, unidirectional load flow

Fossil fuel based sources, hydro, nuclear

21st Century

Transition to the age of electrification Challenges for a new approach 1) Demographics; 2) Resources availability; 3) Climatic changes

Choice to use various generation sources Decentralization, Intermittent generation, the consumer becomes prosumer

Fossil fuel based sources, hydro, nuclear, biomass, wind, solar

21st Century

New electricity age The electricity will be the energy source for most of the daily applications

Sustainable system

Load follows generation Centralized + decentralized generation, intelligence with ICT, bidirectional load flows

Renewable energy sources (wind, solar, hydro, biomass) clean coal, gas, nuclear

THE ENERGY TRANSITION

- Predictable
- Available

 Operate as base load power plants

- Predictable
- Less available

- Very flexible
- Appropriate for fast control
- Less predictable
- Randomly available
- Very volatile
 - Unsuitable to ensure stability

On the frequency stability in power systems

FREQUENCY DEFINITION

ENTSO-E, Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection of generators, 2016.

- frequency means the electric frequency of the system expressed in hertz that can be measured in all parts of the synchronous area under the assumption of a consistent value for the system in the time frame of seconds, with only minor differences between different measurement locations. Its nominal value is 50 Hz.
- the frequency slightly fluctuates from bus to bus due first to local load variations;
- the machines are all the time in transient state and hence small differences in the frequency value exist because of multiple factors;
- short-circuits and contingencies are the most dangerous conditions that can lead to large frequency fluctuations and, in some cases to the loss of synchronism of some generator and, even, to the collapse of the whole system;

WHERE TO MEASURE THE FREQUENCY?

POWER SYSTEM STABILITY

Instability

Insufficient

damping torque+

unstable control

action

Control

Modes

Torsional

Modes

Interarea

Modes

Instability

Insufficient

synchronizing

torque

Local Plant

Modes

Power system stability: "the ability of an electric power system, for a given initial operating condition, to regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables bounded so that practically the entire system remains intact"

POWER SYSTEM STABILITY

An analogy of the electromechanical oscillations phenomena with a mechanical system

Any change in the position of one ball (= operating point) will affect, more or less, all the balls from the system steady-state

The Major grid blackout of the Italian power system, on 28 September 2003

The de-synchronization of the ENTSO-E Continental Europe, on 8 January 2021

WIDE AREA MEASUREMENT IN EUROPE

Basics of frequency control

FUNDAMENTALS OF FREQUENCY CONTROL

Electro Magnetics

Steam/gas turbine High speed **Strong**

Hydro turbine Small speed **Medium**

Wind turbine Low/No speed Weak

FREQUENCY OPERATIONAL THRESHOLDS

HIERARCHICAL FREQUENCY CONTROL

	Primary Control (Frequency Containment)	Secondary Control (automatic Frequency Restoration) Tertiary Control (manual Frequency Restoration)						
Why is this control used?	To stabilize the frequency in case of any imbalance	To restore the frequency and the interchange programs to their target	To restore the secondary control reserve, to manage eventual congestions, and to bring back the frequency and the interchange programs to their target if the secondary control reserve is not sufficient					
How is this control achieved?	Autor	natically	Manually					
Where is this control performed?	Locally	Centrally (TSO)						
Who sends the control signal to the source of reserve?	Local sensor	TSO	Gencos, Consumers or other TSOs (after receiving instructions from the TSO)					
When is this control activated?	Immediately	Immediately (seconds)	Depends on the system					
What sources of reserves can be used?	Depends on the sy	Depends on the system: partially loaded units, loads, fast/slow starting units, changes in exchange programs						

HIERARCHICAL FREQUENCY CONTROL

HIERARCHICAL FREQUENCY CONTROL

Usual time reactions of the frequency and power balancing levels

No.	Control Name	Time frame	Control objectives	Function		
1	Inertial response	0-5 secs	Power balance and transient frequency dip minimization	Transient frequency control		
2	Primary control (Frequency Containment), governor	1-20 secs	Power balance and transient frequency recovery	Transient frequency control		
3	Secondary control, AGC (automatic Frequency Restoration)	2 secs to 3 mins	Power balance and steady-state frequency	Regulation		
4	Real-time market (manual Frequency Restoration)	Every 5 mins	Power balance and economic- dispatch	Load following and reserve provision		
5	Day-ahead market	Every day	Power balance and economic- unit commitment	Unit commitment and reserve provision		

The inertial response

The dynamic behavior of the synchronous machines is governed by the swing equation

The rotating kinetic energy is:

$$E_{kin} = \frac{1}{2} J \omega_{0m}^2 = \frac{1}{2} J (2\pi f_m)^2$$

$$J - \text{moment of inertia of the rotating mass, in kg·m^2} \qquad \omega_{0s} = 2\pi f_n$$

 ω_{0m} – nominal speed of rotation, in mec.rad/s f_m – rotating frequency of the machine

$$f_n = 50 \,\mathrm{Hz} \,\mathrm{or} \,60 \,\mathrm{Hz}$$

The **inertia constant** – the time in seconds a generator can provide the rated power using only the kinetic energy stored in the rotating mass, is:

$$H = \frac{E_{kin}}{S_b} = \frac{1}{2} \frac{J \omega_{0m}^2}{S_b} = \frac{J \left(2\pi f_m\right)^2}{2S_b} \left[\frac{\text{MW} \cdot \text{s}}{\text{MVA}}\right]$$

 $S_b - MVA$ rating of the machine

The inertial response of the synchronous machine can be described by the change in the rotational speed or rotational frequency

$$\frac{\mathrm{d}(E_{kin})}{\mathrm{d}t} = \frac{\mathrm{d}(J\omega_{0m}^2/2)}{\mathrm{d}t} = J(2\pi)^2 f_m \frac{\mathrm{d}f_m}{\mathrm{d}t} = \frac{2HS_b}{f_m} \frac{\mathrm{d}f_m}{\mathrm{d}t} = (P_m - P_e)$$
$$\omega = 2\pi f$$

The rate of change of frequency is proportional to

$$\frac{\partial f}{\partial t} \cong \frac{\Delta P}{2H}$$

The greater the inertia, the less acceleration will be observed and the less will be the frequency deviation. Inertia is proportional to the total rotating mass.

Turbo-generator

Small diameter Large rot. speed

Large torque Large inertia constant

H = 3 ÷ 7 MWs/MVA

Hydro-generator

Sync. condenser

Large diameter Small rot. speed

Small torque Small inertia constant

 $H = 2 \div 4 MWs/MVA$

No driving system Small inertia constant

 $H = 1 \div 1.25 \text{ MWs/MVA}$

THE NEED FOR INERTIA COMPENSATION SOLUTIONS

THE NEED FOR INERTIA COMPENSATION SOLUTIONS

THE NEED FOR INERTIA COMPENSATION SOLUTIONS

The frequency containment control

PRIMARY FREQUENCY CONTROL

Speed governor control of a generating unit:

PRIMARY FREQUENCY CONTROL

Steady-state characteristic of *f*/*P* control

- ω_{NL} = steady-state speed at no load
- ω_{FL} = steady-state speed at full load
- ω_0 = nominal or rated speed
- *R* = percent speed regulation or droop

A 5% droop or regulation means that a 5% frequency deviation cause 100% change in valve position of power output

Automatic Generation Control

AUTOMATIC GENERATION CONTROL (AGC)

AUTOMATIC GENERATION CONTROL (AGC)

AUTOMATIC GENERATION CONTROL (AGC)

Snapshot of AGC operation is Romania

Navigate HABITAT Applications EMP Applications Protocoale Overview Displays Related Displays Analyst Displays Help							
· + ⇒ - ↓ + 🛯 🚟 - 🔄 🖨 - 🚔 🖬 ↦ ¥ < ▼ 🛟		1		~	-	Your Logo Goe	Herel AREVA
i - 🏗 🗊 🏋 🎦 🥙 🀺 🎊 🔂 🌠 🖕 SUN BLG ING ARG 📶 🗐 🔣 🖈 🔻							
Generation Summary							
DEC ACE: -41 OPENLOOP Interchange	- CurrentP ScheduledP	51 Gen: 64 12 Load: 64	46 Fre 98	equency:	49.997		
LINI REAL		CENT	CONS	BAND	TARG	REAL	R ERR
UCRS 0		PDFE	0	0	0	365	
MUKA -129		CORB			0		
VARN -6		LOTR		300	0	25	
DOBR -3 CONS REAL ABAT K		STEJ			0	38	
KOZ1 -138 KOZ1 -138 KOZ1 -2 10 * 57	Banda %	MARI	0	0	0	0	
NUC2 U SOLD R D 12 51 40	100	GILC			0		
		SUGA			0	75	
FM = 50.005 Hz PM = 63.0 MW RM = 65.9 MW	80 _	BRDS			0		
SIP 0	_	RETE			0	213	
SAND -79	60 -	REME			0		
BEKE1 39 -2000 1600 -1200 -800 -400 0 +400 +800 +1200 +1600 +2000		RUIE	0	0	0	0	
VULC 0 <u>I I I I I I I I I I I I I I I I I I </u>	40 -	TISM			0		
/ECINI SOLD		PARO			0	102	
JCRA -129	20	ROVI	0	100	0	848	Ð
BULG -146	20 _	TURC	0	70	0	807	D
SERB 313	<u> </u>	MINT	0	0	0	50	
UNGR -40	0	ISAL	0	0	0	139	
MOLD 0		PROM	0	0		0	
		BRAZ	0	0		0	
		BRAI	0	0		0	
FFSET 0 ORA PREC: FM = 50.010 Hz PM = -3.3 MW RM = 2.6 MV	/			20		248	
		BORZ	0	0			
SUMA -51		SUMA =	264	BRT=	190		
SUMA 51		SUMA =	264	BRT=	190		
(@BECEMS2501DEC@BECEMS150					23	/06/2017 03	-26 📫

- Power flow on the interconnection lines (lest side);
- Power exchange deviation (SOLD, in the centre);
- The actual band used in secondary control (BAND column, on the right side). One can observe that is a special case when the total secondary reserve was fully used;
- Total power generation of all power plants integrated into the AGC scheme;
- The area control error (=-41, for this instant);
- Power system frequency;
- Total generation and load.
AUTOMATIC GENERATION CONTROL (AGC)

	Activation	Full availability	Utilization	Controller cycle	Controller type
ENTSO-E	≤ 30 s	≤ 15 min	As long as required	1-5 s	l or Pl
Germany	Immediately or ≤ 5 min	≤ 15 min	As long as required	1-2 s	PI
France	≤ 30 s	≤ 430 s or ≤ 97 s	As long as required	5 s	I
Spain		≤ 300-500 s	≥ 15 min	4 s	P or PI, depending on the regulation zone
Netherlands	30 s – 1 min	≤ 15 min	≥ 15 min and by consensus	4s	PI, with additional heuristics
Belgium	≤ 10 s	≤ 10 min	As long as required	5s	PI
Romania	≤ 30 s	≤ 15 min	As long as required	4 s	PI

AUTOMATIC GENERATION CONTROL (AGC)

Example of hydro-generator reaction to control order

HIERARCHICAL FREQUENCY CONTROL

The active power produced by a generator is the results of:

- Load setting (DAM and BC)
- Frequency Containment response
- AGC response
- Manual orders changes

Storage is essential to support 100% renewables

ENERGY STORAGE TECHNOLOGIES

ENERGY STORAGE TECHNOLOGIES

Source: ABB

Ancillary Service	Storage system	
RoCoF Control Response time = 10 - 100 ms	Li-ion, Flow, Lead-acid, Super-cap, Flywheels, loads, HVDC	Source: <u>AEM</u>
FCR (primary control) Response time <30 sec. Deployment – up to 15 min.	Li-ion, Flow, Lead-acid, Pumped hydro, CAES, HVDC	
FRR (secondary control) Response time >30 sec. Deployment – as long as necessary	Pumped hydro, CAES, HVDC	

ENERGY STORAGE - ROMANIA CASE

Simulations based frequency analysis

Simulating primary and secondary frequency controls

- Two area interconnected
- Three types of turbines considered
- Droop and AGC controls simulated
- BESS to provide inertial response

Battery Energy Storage System model

 K_1 and K_2 are weighting factors of the signal inputs

 T_{BESS} is the simulated time reaction of the BESS

Hypotheses: Inertia constant H = 6.5 s; only hydroelectric units are considered for frequency control.

Hypotheses:Inertiaconstant H = 3 s; onlyhydroelectricunitsareconsideredforfrequency control.

reference step power imbalance in area k of 0.01 p.u. occurring at 5 seconds from the simulation start.

Power contribution under normal inertia value; all types of generation units considered for frequency control

[Hydro and reheat units are slower in primary frequency control level than battery and non-reheat units]

BESS USED FOR FREQUENCY CONTROL

The flywheels and super-capacitors are more appropriate for providing inertial frequency control because they are characterized by high power and low energy, as well as the fastest time reaction for frequency control; we should mention that the two type of storage systems can be charged very fast so that they can be capable of providing inertial response for the next important event that occurs in the power system.

49.94

The **Li-ion batteries** are more appropriate for **primary frequency control** because they are characterized by **low power** and **high energy**; if batteries are used for inertial control, their energy capability will not be efficiently used from economic point of view. On the other hand, for the actual technology of the Li-ion batteries, the fast change in the operation mode (switching from charging to discharging and vice versa) may significantly reduce their lifetime.

Frequency measurement

- phasor: A complex equivalent, in polar or rectangular form, of a sinusoidal wave quantity.
- synchronized phasor or synchrophasor: A phasor calculated from data samples using a standard time signal as the reference for the measurement.
- phasor measurement unit (PMU): a device that measures and reports synchronized phasor, frequency, and ROCOF estimates from voltage and/or current signals and a time synchronizing signal.
- phasor data concentrator (PDC): A function that collects phasor data, and discrete event data from PMUs and possibly from other PDCs, and transmits data to other applications.

PC37.118.1a[™]/D1 Draft Standard for IEEE Standard for Synchrophasor Measurements for Power Systems – specifies maximum errors (FE and RFE) for different reporting rates.

Three devices, of deferent reporting rate:

- PMU 50 frames/s (successive data frames every 20 ms),
- µPMU -100 frames/s (successive data frames every 10 ms),
- USM 1 frame/s (successive data frames every 1s).

Location: Faculty of Electrical Engineering - UPB

Description	PMU	Micro PMU	RTU/ BCU/ IED	Classic Energy meter	Unbundled Smart Meter
Synchronisation requirements	<1 µs	<1 µs	1 – 2 s	1 – 5 s	≤ 1 s
Reporting rate (typical) [frames/s]	50	100	1	1 – 0.2	> 1
Freq. resolution in steady state conditions [mHz]	<0.01	<0.01	10 100	103 100	10
Accuracy	Spec.	Spec.	Not spec.	Not spec.	≈0.2%
Measurement capabilities	Dynamic state	Dynamic state	Steady state	Steady state	Steady state

Frequency during power system disturbance: microPMU data aggregated (asynchronous 100 points average) and USM data (original measurements)

Frequency during power system disturbance: microPMU (asynchronous 100 points average with reporting interval of 1s; original data with 100 frames/s; asynchronous 2 points average with reporting interval of 20ms); PMU data (50 frames/s)

Effects of wind variation

POWER GENERATION FROM RES IN ROMANIA

Analysis of various frequency events in Romania

THE WIDE AREA MEASUREMENT SYSTEM IN ROMANIA

WAMS in Romania

- 15 PMUs + 1 central PDC
- manufactured by Schweitzer Engineering Laboratories (SEL)
- Located at border buses and at the most important power plants
- Reporting rate: 25 values per second (40 ms time interval)

THE WIDE AREA MEASUREMENT SYSTEM IN ROMANIA

A. FREQUENCY VARIATIONS CAUSED BY THE DISCONNECTION OF LARGE MECHANICAL INERTIA

Cernavoda Nuclear Power Plant 2 x 700 MW

CNPP_ev1: 1st June 2017

- One unit was under planned maintenance (half inertia available)
- Sudden full disconnection of the unit (no inertia remained)
- The instant of perturbation:
 - 18% wind generation
 - 17% power export

CNPP_ev2: 16 August 2018

- Both units in operation
- Sudden full disconnection of the unit
- The instant of perturbation:
 - 4.4% wind generation
 - 6% power export

A. FREQUENCY VARIATIONS CAUSED BY THE DISCONNECTION OF LARGE MECHANICAL INERTIA

- The local mechanical inertia determines the frequency dip, which is double when both units of CNPP are disconnected
- The frequency is stabilized within 1 second, earlier than the time delay specific to the primary frequency control

- the frequency reaches the nadir value after 5 reporting intervals (200 ms), then the frequency is stabilized after 10 reporting intervals (400 ms).
- The mechanical inertia is deployed after 2-3 reporting intervals (80-120 ms), when RoCoF starts decreasing

B. FREQUENCY VARIATIONS CAUSED BY SLOW LONG-TERM UNBALANCES

- On 10 January 2019, 21:02 CET, a new critical situation was recorded in the Continental Europe power system. The frequency dropped to 49.8 Hz for nine seconds, as compared to 49.0 Hz in 2006, during the desynchronization of the ENTSO-E power system.
- The frequency was almost identical in both Germany and Romania showing that, under the current operating conditions of the European Continental power system, with large mechanical inertia available across the system, the generators maintain synchronism with each other.

The Virtual Power Plant

AGGREGATED CONTROL

VIRTUAL POWER PLANT – SIMULATION IN EUROSTAG

VIRTUAL POWER PLANT – SIMULATION IN SIMULINK

The Romanian power system

Objectives: providing power reserves from Virtual Power Plants for the **Frequency Restoration Control**

Results: recommendations for designing the VPP control scheme

Network characteristics

- 2600 MW Wind Power
- 1400 MW Nuclear Power
- Peninsular Configuration
- Generation Surplus

Importance d

Recommendations for VPPs:

- When a CI-ESS is used for aFRC, delays should be added to the reaction of the CI-ESS in order to avoid the frequency to be restored in a longer time.
 - In order to save the energy available for aFRC, some CI-ESSs can be included in the tertiary frequency control level.
- As the share of RES increases, larger CI-ESSs are required
- Standardization of the operation in relation to the network operator in the grid cods, such as: communication type, power reserve monitoring, and Quality of Service (QoS) monitoring

pr VPP balancing

Desynchronizing the grids by Solid State Transformer

The distribution grids are subjected to

- frequency perturbations
- voltage transients coming from upstream
- voltage fluctuations
- special protections designs

Solutions for power system stability under renewables dominated operating conditions

Lucian Toma, Mihai Sănduleac University "Politehnica" of Bucharest Department of Electrical Power Systems

Email: lucian.toma@ieee.org mihai.sanduleac@upb.ro

The International Conference on Applied and Theoretical Electricity (ICATE), 27-29 May 2021

Measurements based frequency analysis