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Abstract - A new method for the analysis of a linear 
parametric A.C. model of a power BAW resonator is 
presented. A significant shortening of the computation 
time, in comparison to the APLAC implementation, can 
be obtained by this way. An example is given for 
illustration. 
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1. INTRODUCTION 

The use of the digital radio type solutions in the 
mobile communications is a challenge in the actual 
microelectronic technology. Because high-power 
CMOS transistors are not expected to be available in 
advanced processes within the next several years, the 
RF front end of the mobile phone will remain analog. 
In order to miniaturize the mobile phone, the digital 
part and the analog one can be integrated together as 
a SiP/SoC system. To this end the BAW (Bulk 
Acoustic Wave) resonators with AlN like 
piezoelectric material are one of the best solutions. 
Being compatible with silicon substrate and 
processing and significantly cheaper than surface 
acoustic wave (SAW) [1], the BAW technology has 
been emerging recently as an alternative solution [2]. 

 

 

Fig. 1 Thin film resonators. (a)FBAR, (b)SMR 
 

Two types of elementary BAW resonators are 
produced [3] as it is shown in Fig. 1: solidly mounted 
resonator (SMR) and acoustic film bulk resonator 
(FBAR).  
The SMR has a resonating structure acoustically 
isolated from the substrate by a Bragg mirror (a set of 
alternating high and low acoustic impedance quarter 
wavelength layers). A FBAR resonator has an air gap 
(cavity) realized by surface micromachining which 
isolates the resonating structure. The phenomena in a 
nonlinear BAW resonator can be analyzed solving a 
coupled field problem having an electro-mechanical-
thermal nature. The terminal nonlinear behavior may 
be caused by the nonlinear character of one or more 
field constitutive equations (mechanical, electrical, 
and electro-mechanical) or by the temperature 
dependence of some material parameters.  
Recently the coupled resonator filter (CRF) has been 
reported [4]. This filter, used with very good 
performance in mobile telephony, has two or more 
mechanically coupled resonators and has the 
advantage of a less nonlinear behavior than a filter 
built with SMR or FBAR resonators mechanically 
uncoupled. 

 

Fig. 2 Coupled resonator filter 

Usually the nonlinear behavior of a multi-resonator 
filter is illustrated by measurements. There are three 
effects illustrating this kind of behavior:  

• the amplitude-frequency effect 
• the intermodulation effect 

32

Annals of the University of Craiova, Electrical Engineering series, No. 30, 2006_________________________________________________________________________________________________



• the bias-frequency effect 
the most important being the first one. 
Mostly, physical models are proposed in the literature 
for the nonlinear BAW resonators. These models 
start from the assumption that one of the constitutive 
equations mentioned above is nonlinear. Because the 
coefficients of the Taylor series development of these 
equations cannot be directly measured, it is very 
difficult to build a physical model with a large 
enough range of validity. In spite of this, some 
impressive agreements are reported between the 
values calculated with the proposed models and the 
experimental measurements, these agreements being 
usually limited to the measurements done by the 
authors themselves [5]. This is because some 
behavioral models have been developed starting from 
measured data only [6].  
As the design of the mobile phone analog front end 
requires the simulation of the power amplifier 
together with the BAW filters, circuit models for the 
BAW resonators are very useful. A linear BAW 
resonator has the same circuit model as a quartz or 
SAW resonator – the BVD circuit [1]. The most 
known nonlinear circuit models [7, 8, 6] assume a 
quadratic dependence of the resistance and the 
reactance in the motional branch on the r.m.s. current 
value I, illustrating only the amplitude-frequency 
effect. The physical models [7, 8] cannot be 
implemented in a circuit analysis program working 
either in the time domain or in the frequency domain. 
The behavioral model in [6] has been implemented in 
the APLAC simulator using iterative A.C. analyses in 
order to find the value of the parameter I. This 
implementation leads to a reduced computation speed 
due to the subrelaxation factor ]1,2.0[∈α  which 
must be used to ensure the convergence of the 
iterative A.C. analyses [6].  
In this paper a technique for fast analysis of this 
model is proposed. In Section 2 the behavioral model 
and the new method for its solving are presented. An 
analysis example is given in Section 3 followed by a 
discussion in Section 4.  

2. THE MODEL AND ITS SOLVING 

In [7] a parametric circuit model of a quartz resonator 
is proposed (Fig. 3.). Starting from a quadratic 
dependence of the resonant frequency on the r.m.s. 
value of the input current I, a constant inductivity and 
a current dependent capacity are proposed: 

 )1(1
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The resistance value is considered as: 

 )1()( 2IRIR β+= . (2) 

 

 
Fig. 3. Parametric circuit model of a quartz resonator 

[7] 

This model gives the correct current dependence on 
frequency having the input voltage as parameter and 
the correct resonance frequency dependence on the 
input voltage (Fig. 4). A 4-th order nonlinearity in the 
mechanical constitutive equation only is considered 
in this model. The parameter identification is based 
on so called “nonlinear constants” involved in the 
Taylor series development of this equation as well as 
on the well known formulas of the resonance 
frequencies and the quality factor. 

 
Fig.4. Frequency characteristics of a nonlinear quartz 

resonator [7] 

The family of the frequency characteristics in Fig. 4 
is given for VUU 1.00 ==  and UkUU ∆+= 0  

where VU 0533.0=∆  and 6,...,1,0=k . 
A new parameter identification procedure for the 
model in Fig. 3 based only on the frequency 
characteristics in Fig. 4 has been developed in [6]. 
This procedure uses the formulas of the resonance 
frequencies and the quality factor in the small signal 
operation together with a least squares estimation of 
α  and β  based on the dependence of the series 
resonance frequency and the resonance current on the 
input voltage. 
The input admittance of the circuit in Fig. 3 is 

33

Annals of the University of Craiova, Electrical Engineering series, No. 30, 2006_________________________________________________________________________________________________



 
2)2)/(1(2/22

2)2)0/(1)/(1(2/22

0)(
ωω

ωω
ωω

−+

−++
⋅=

LCLR

LCLCLR
CjY  (3) 

Replacing R and C in (3) according to (1) and (2) a 
nonlinear equation in I can be obtained: 

 0),()( =⋅−= UIjYIIf ω  (4) 

This equation may be solved using the Newton-
Raphson procedure: 

 )()( )()(1)()1( kkkk IfIfII −+ ′−=  (5) 

These iterations are stopped if a certain error margin 
ε  is reached: 

 ε≤−=∆ + )()1( kk III  

The computation is organized in three cycles: 
- the outermost one sweeps the values of the 

excitation voltage U, 
- the following cycle sweeps the frequency 

interval of interest, 
- the innermost one contains the Newton-

Raphson iterations. 
The analysis starts with an initial value for I which is 
considered null for the first frequency of interest, and 
corresponds to I at the previous frequency in other 
cases. 

3. EXAMPLE 

The frequency characteristics in Fig. 4 lead, 
according to the parameter identification procedure in 
[6], to the following values: R=165 Ω, L=4.2 H, 
C=2.412·10-16 F, C0=1.116·10-10 F, α=1.14 A-2, 
β=3.405·105 A-2. 
The procedure described in Section 2 has been 
implemented in a C code. The frequency 
characteristics in Fig. 5, whose similarity with Fig. 4 
is obviously, are obtained in 10ms for an absolute 
current  error ε =10-12 A using this code. To obtain 
the symbolic expressions of )( ωjY , )(If  and 

)(If ′  with MAPLE 9, 0.5 s are necessary. 
 
The APLAC implementation of an A.C. analysis 
sequence leads to the same frequency characteristics 
in 6.4 s. This simulation time may be considered as 
surprisingly long, taking into account that I is among 
the main unknowns of the Harmonic Balance method. 
The reason behind this long duration is that APLAC 
doesn’t allow the variable I to be included in an user 
defined model and some iterations are necessary to 
find the correct value of this variable for each 
frequency value and  for each value of the input 
voltage. 

 

 
Fig.5. Computed frequency characteristics of a 

nonlinear quartz resonator 

4. DISCUSSION 

A symbolic admittance expression has been used to 
accelerate the analysis of an A.C. parametric model 
of a power BAW resonator. The parameter being a 
r.m.s. value, the comparison has been made taking 
into account a repetitive A.C. analysis performed 
with APLAC in order to find the parameter value.  
The proposed procedure can be used for a filter 
composed by many resonators. For example, in the  

 
Fig. 6 Ladder filter 

ladder filter in Fig. 6 the first resonator, which is the 
closest to the input source, has the greatest r.m.s. 
current value and, therefore, its amplitude-frequency 
effect is the most important. This effect is less 
significant for the second resonator and so on. In the 
first step of the analysis the resonators 2, 3, and 4 are 
supposed to have a linear behavior, so that only the 
Newton-Raphson iterations with respect to I1 are 
performed. In the second step the dependences on I2 
are considered performing some Newton-Raphson 
iterations with respect to this variable; after that some 
Newton-Raphson iterations with respect to I1 are 
performed taking into account the corrected values 
R(I2) and R(I2). Because all resonators in the filter 
have similar geometric and material parameters, 
usually there is no need to perform Newton-Raphson 
iterations with respect to all currents. 
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Because the circuit models of the power BAW 
resonators exhibiting an “energetic” dependence on 
the motional branch current can not be implemented 
efficiently in a circuit analysis program, a method for 
the fast analysis has been proposed. Using some 
symbolic expressions, this method has been built 
taking into account some special properties of the 
equivalent circuits of the power BAW resonators and 
therefore can not be used for arbitrary circuits.  
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