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Abstract — In the paper, using conformal mappings,
some new formulas are derived for supplementary
steady-state resistance of flat homogeneous and
isotropic conductors, caused by the current lines
deformation near the bandwidth reduction and in the
corners.
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1. INTRODUCTION

It is well known that the current lines deformation in
the vicinity of variable cross-section conductors lead
to an increase of the steady state resistance, which
can be taken into account by the so called
“constriction resistance”, used mainly in the electric
contact theory, where simple formulais given for the
case of axialy-symmetric conductors [1]. In the
paper, using conformal mappings similar formulas
are obtained for the case of flat conductors.
Moreover, asimilar phenomenon occurs in the corner
of flat conductors and for this case a “corner
resistance” isintroduced and evaluated.

2. CONSTRICTION RESISTANCE

In Fig. 1 the current lines in a half of symmetrical
bandwidth reduction are shown and the values of
corresponding constriction resistance are given for
the case when the length of narrow and large parts
tend to infinity.

2.1. Constriction resistancefor h=d = o
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maps the upper half planet (fig. 2 b) into the shaded
domain fromfig. 2a [2].

The "constriction resistance” is defined as a
difference between the rea resistance of the
constricted from a to b band and the sum of the
resistances of the two segments, for the case
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Fig. 1. Constriction resistance of bandwidth
reduction
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where A is the (constant) thickness of the band and &
isthe material conductivity.
After the computations, similar to given in annex of
[3] and [4], the following formula was obtained for
the constriction resistance of the A thickness band
(Fig. 1):

Ry(X) =

2_
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The resistance of the shaded band from fig. 2 a) is
equal to the sum of the resistances of two segments
(with uniform distributed current) plus R..

The complex potential of the current density fieldj in
t-plane will be:
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where | [A] is the current and the complex conjugate
of current density in z-planeis
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Fig. 2: Domains of the map for "constriction
resistance”

2.2. Congtriction resistancefor h=0, d =

In case of frontal electric contact the length of the
narrow part of the slab can be considered rather O.

The analytical function:

. V4
t= Sn(ﬂfgj (6)

maps the shaded domain from Fig. 3 into the upper
half t-plane.
The complex potential int-planeis:

{=V+iU :UOArcos% (7)

The equipotential lines are confocal elliptica
cylinders and the current lines are confoca
hyperbolic cylinders with the focuses & and a and
with following half axes:

a, = fcoshi; b, = fsinhi
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Thetotal current injected in A,A will be
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Fig. 3. Corresponding domains for constriction
resistance at h=0 and d infinite

In Fig. 3 the following relations can be observed:

b=- co{néj ; C= cosh(n E)
a a

2f =b+1; x:c+%

(19)

The resistance of the slab between grounded surface
A,A and the surface with the potential U, passing
through the point M will be:

Ug Arch%
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(11)

The geometrical resistance of considered domain will
be:

1-b+2c

1+b (12)
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The corresponding constriction resistance will be:

Ry| heo = dli_rﬂo{%Arch(a c+p) _%}
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Replacing the Arch with Ln
Arch(z) = Ln(z+\/ 22 —1) (1‘;'
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Taking into account the eq. (10) and replacing the
cosh with exponential function, it results for the
constriction resistance of the rectangular cross-
section slab for h=0and d = «:
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Comparing the eg. (15) and (3), we can observe in
Fig. 4 that the values of the constriction resistance
are almost coincident in both cases, that means that,
at least for large d, the length of narrow part h is not
important and can be considered equal to zero.
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Fig. 4: Constriction resistance for h=c0 and h=0 at d=

2.3. Constriction resistance for h = 0 and d finite
In the case of finite length of wide part of the plate

the following analytical function can be used:

W:LF(z,m); z:sn(@w,mj a7

K(m)

where F and K are the incomplete, respectively
complete elliptic integrals of first order with module
m and sn the elliptic sinus. This function maps the
shaded domain from Fig. 5 into the upper haf z-
plane[2].
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Fig. 5: Corresponding domains for constriction
resistance at h=0 and d finite

When the point A coincides with A, the geometric
resistance R; of the half rectangle, between AzA, and
symmetry axis OO’will be:

d

R(m) =~ (18)

If as argument of elliptic integral F is taken the angle
¢ (z=sine) thereisthe functional equation [5]:

F(Lix,m]: K(m) +i F(arcsjnm—?‘,m') (19)
2 m

If as argument of F is considered x, this equation
become:

2
F(x,m)=K(m)+iF{ X fl,m'] (20)
xm
In particular,
1 e
F(E’ j:K(m)+|K (m) (21)
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For the point A, it results the following equation,
which determine the module m:

d+ia=LF(1,mJ=d{l+im}
K(m) (m K (m)
(22)
= R(m)zgzm
1 a K'(m)

where R; is also two times the geometric resistance
between the strip aga, and the symmetry axis OO’
(Fig. 5).

For small and large m can be used the following
approximations:

T > m< 0.6
2|ni_m7
2
E In 4 1 m2 ;. m>0.85
T 1-m? 5-m

For d < 0.6 a the module m can be evaluated with the
formula, derived from first eq. (23):

m~4dexp - =2 |<03
2d

The equation (22) and the approximations (23) are
shown in Fig. 6.
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Fig. 6: The two approximations (23)

Applying the eg. (20) to the point a, we can write:
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It resultsfor &:
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[ 1-m? J (26)
8(x,m)=d
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The geometric resistance between the stripe AzA and
OO’ will be Ry(1/x) and the constriction resistance:

R, o (6m) = }JR{%}— Rl(m)}

The corresponding dimension ratio results from (22)

and (26):

F[
6 —
a
Taking values for me(0, 1) and xe(1, 1/m), the
constriction resistances can be calculated for h = 0
and finite values of the length d of the wide part of
the dlab, for varies dimensionsratios (Table 1).
In Fig. 6 are given the values of constriction
resistance, calculated with (27) (solid lines) and with
eg. (15) (dots). It can be observed that ford > a/ 2
the simple formula (15), obtained for d / a = « can be
used for constriction resistance evaluation.
For accurate evaluation of the equations (27) and
(28), the following approximations of eliptic integral
K and K” were used:

(27)
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For m > 1-107 the elliptic integral F can be
approximated as:
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F(x,m) ~arth(x), m>1-10"' (30)
3
2.5
o AR, £=0.1
h=0 @
2 — 0.2
— 0.3
1.5 /_0'5
=
1
0.5
Y
N
1]
12 001 E 0l 1
"3
Fig. 7: Constriction resistancefor h=0, d/a-
parameter (27)
d/al o0.01 0.02 0.03 0.04 0.05
m | 2.4.10% [ 3.11.10%* | 7.28.10% | 3.5.10" | 9.08. 10
d/lal o1 0.2 0.3 0.4 0.5
m | 6.07-107 | 1.55.10° | 2.14.102 | 7.85.102 | 0.172

Table 1: Corresponding values of R; and m (22).

3. CONCLUSIONS

For d/a >0.5, the length h of narrow part of the band
can be considered zero and the new formula (15) can
be used for constriction resistance evaluation of
bandwidth reduction. For smaller d/a, the new
algorithm given by eq. (22), (27), (28) and Fig. 7
have to be used.
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