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Abstract − This paper proposes a modified relaxation-
based method for gross error identification. Toward 
this end,a participation matrix is defined. It consists of 
the elements of the residue sensitivity matrix and the 
corresponding measurements. The sum of row elements 
of the participation matrix constitutes the residues. The 
column elements of the participation matrix are also a 
source of information of masking which sum is 
quantified as distortion. Large distortion and large 
residues are proposed to indicate the quality of 
measurements. The measurement corresponding to the 
poorest quality is then corrected using the modified 
form of relaxation. The above procedure is repeated 
sequentially until all residues are within a particular 
tolerance. The method gives a measurement set very 
near to true measurement set. 

Keywords: state estimation, error filtering, 
relaxation methods 

1. INTRODUCTION 

Power system state estimation is an important 
algorithm used in monitoring and control the power 
system. The presence of gross errors in 
measurements tends to bias the estimated state of the 
system. Hence, it is essentially to eliminate grossly 
erroneous measurements. Measurement residuals are 
conventionally used for this purpose. However, the 
measurement residuals suffer from the phenomenon 
of smearing, [1 … 4]. Different strategies could be 
employed for grouped search, as given by [5]...[9]. 
All of them have acknowledged the importance of 
measurement correction. 
Slutsker, [10], has exploited the best of both the 
ordered and the grouped search techniques. The 
method comes up with the unique proposition of 
unmasking of the residuals with the help of 
measurement compensation. The selection of the 
initial suspected set is done using the unmasking 
property of measurement compensation. This 
unmasking property is due to the partial 
neutralization of the errors. The method estimates the 
error in the measurements in an optimal way, 
[8_…_9]), and identification of gross error is carried 
out using hypothesis testing. The advantages of 
ordered search for extraction of gross error over the 
optimal error estimation in brought out clearly in 
[11]. The role of the column elements of the residue 

sensitivity matrix in the formation of the residues is 
well illustrated by [12] . The importance of the 
sequential correction of measurements for better 
identification has been highlighted in [7], [10] and 
[13]. In [2] and [14] it was confirmed that the 
interaction of measurements takes place in its 
neighborhood only. Slusker, [15] discusses the 
requirement of localized search. A study of repeated 
application of measurement correction using a 
modified form of relaxation technique to the 
identified grossly erroneous measurements revealed 
that it is possible to correct the identified 
measurements toward their true values. In [16] it was 
applied the relaxation for the estimation of large 
power systems. 
This paper makes an attempt to formulate a scheme 
for gross error identification using a modified form 
of relaxation. It tries to make the best use of the rich 
knowledge available in the above literature to 
formulate the scheme. Toward this end it s proposed 
a new approach of the error residue equation related 
through the residual sensitivity matrix "W  ". In the 
proposed method the error vector is viewed as a set 
of objects. Each element of the residue sensitivity 
matrix W  is considered as a filter. When the objects 
are seen through the filters, the images are obtained. 
The images are in form of a matrix called image 
matrix " IM ". The sum of the row elements of the 
image matrix is called the residual image vector 
RIM . The column elements represent the quantum 
of image transmission of an error into the residual 
image vector, [12]. The sum of the column elements 
of the image matrix is therefore defined as the image 
distortion vector DIM . Image distortion is defined 
as the cause of masking. 
Computation of RIM  and DIM  vectors cannot 
actually be carried out because e  is an unknown 
vector. The residues and distortions are therefore 
defined using the elements of measurement vector as 
objects. The matrix consisting of the product of 
elements of W matrix and the corresponding 
measurement is defined as the participation matrix. 
The sum of the row elements of the participation 
matrix then gives the residue vector. The sum of the 
magnitude of the column elements of participation 
matrix is defined as the distortion vector. 
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The information contained in the residue vector and 
the distortion vector is used to obtain a set of 
suspected measurements. The residues and the 
distortions are further employed to describe the 
quality of a measurement. The measurement having a 
poor quality and belonging to the suspected set is 
presumed as a grossly erroneous measurement, and is 
a correction by injecting a fictious error into this 
measurement. This procedure is repeated by picking 
the poorest quality measurements, one at a time, to 
nullify its residue. The convergence implies that the 
applied corrections have pruned the errors contained 
in the measurements. Correcting one grossly 
erroneous measurement at a time, other residues are 
influenced. This is effective in uncovering the 
masking of the residues. The technique applied 
iteratively finally approaches the true value of the 
measurements. Individual gross error magnitudes are 
then precisely and readily and computed. The 
proposed method has been implanted on IEEE-30 
bus system for δ−P  formulation. 

2. ERRORS AS OBJECTS AND W MATRIX AS 
A SET OF FILTERS 

Let [ ]Tmi eeeee ,...,,...,, 21=             (1) 
be the error vector of dimension "m", where m is the 
number of measurements in a given system. Consider 
the individual elements of e  as objects. Let the i -th 
error ie  be represented by a circle with radius ie  
and the zero error represented by a point. Figure 1 
shows this pictorial representation. A similar 
representation will hold for images too. 
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Figure 1: Representation of error 

Let ijW be called a filter. The object ie , when seen 

through the ijW  filter produces an image called 

subimage ijIM . The subimage ijIM  is represented 

by a circle with radius ijIM . Individual elements of 

the image matrix are given by: 

 jijij eWIM ⋅= , i=1,2, ..., m; j=1, 2, ..., m (2) 

The i -th column of the W  matrix is a column filter 
corresponding to the error ie . Each error input gives 
a column of subimages, depending on the property of 
its column filter. The image matrix consists of 
subimages due to errors present in e . The sum of 
this subimages taken row wise is called residual 
image RIM , at i -th location. This is numerically 
the residue ir . Also, ie distorts all images except i -
th, through the i -th column of W . Sum of the 
magnitudes of the i -th column is therefore termed as 
the image distortion iDIM  due to the i -the error 

ie (Figure 2).  
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Figure 2: Image distortion 

In Figure 2, some of the images are shown shaded to 
indicate that the image can be an inverted image. 
Therefore, the magnitudes of the images are 
computed to calculate the distortion. 
Mathematical forms of RIM  and DIM  are given as: 

 UIMR ⋅=Im  (3) 

where U  is a m  vector with all elements equal to 
one and: 

 { } mi
iiDIMDIM =
== 1  (4) 

where ∑
=

=
m

j
jii IMDIM

1
 

3. PARTICIPATION MATRIX 

Consider the equation: 

 ezz t +=  (5) 

where z  is the given measurement vector, tz  is the 
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true measurement vector and e  is the error vector, 
all of order m . tz  and e  are unknown. Also, as 
explained in [1] and [2], for the linear state 
estimation: 
 ( ) eWezWzWr t ⋅=+=⋅=  (6) 

where the W  matrix is given by: 

 [ ] 111 −−−−= RHHRHHIW TT  (7) 

H  is the Jacobian matrix and R  is the covariance 
matrix with i -th measurement having a variance of 

2
iσ . Now define a participation matrix P  such that: 

 jijij zWP ⋅= , i=1, 2, ...,m; j=1, 2, ...,m (8) 

The residue vector r  and the distortion vector d  in 
terms of the participation matrix is given by: 

 UPr ⋅=  (9) 

 { } mi
iidd =
== 1  (10) 

where: 

 ∑
=

=
m

j
jii Pd

1
 (11) 

This definition is helpful in two ways: 

(a) The distortion d can be numerically computed 
from z  unlike DIM of equation (4). 

(b) The parallelism between DIM  and d  is 
maintained. 

It is observed that a large id  is an indication of a 
large magnitude of measurement and a large masking 
effect, in case it is grossly erroneous. The 
information available in r  and d  is now used 
judiciously to identify the location of gross errors. A 
set theoretic formulation is described bellow. 

4. SET THEORETIC FORMULATION 

Let 

 { } mi
iizS =
== 1  (12) 

be the given measurement set and let: 

 { } mi
iir rS

n

=
== 1  (13) 

denote the set of normalized residues: 

 
iii

i
ni W

r
r

σ⋅
= , i=1, 2, ...,m (14) 

Let nkr  be the largest residue in 
nrS . Then nkr  

indicates the presence of bad data in a particular k -

th measurement kz , or in the neighborhood 
associated with kz . The neighborhood dlS (set of 
measurements) of kz is defined on the basis of 
P matrix as follows: 

If pkjP λ> , then dlj Sz ∈   (15) 

where pλ  is a chosen "participation threshold". dlS  

thus specifies the measurements that create large 
distortions in nkr . It can be seen that measurements 
in dlS  belong to the same local area. 
Define a group of measurements with large residues: 

 { }rniirl rzS λ>= :  (16) 

where rλ  is a chosen "residue threshold". Let: 

 { }knl zS =  (17) 

Define: 

 ( ) nldlrls SSSS ∪∩=  (18) 

The set sS  comprises the set of suspected grossly 
erroneous measurements in the neighborhood of the 
largest residue. As stated in the introduction, one 
measurement from sS  is to be chosen for correction. 
A quality factor: 

 ( ) ( ) 11 βα
inii drq ⋅=  (19) 

is introduced for this purpose. A large iq  means 
poor quality. Factors 1α  and 1β  denote the 
importance assigned to residue at the distortion, 
respectively. A subset qS  of sS  is defined as: 

 { }qiiq qzS λ>= :  (20) 

where pλ  is a chosen "quality threshold". Threshold 

pλ  is chosen such that it selects only one 

measurement qz . 

5. MEASUREMENT CORRECTION 

The measurement qz , which is defined as grossly 

erroneous, is now corrected as follows. The q -th 
residue qr  is given by: 

 j

m

qj
j

qjqqqq zWzWr ⋅+⋅= ∑
≠
=1

 (21) 

Let  qqqq zWSC ⋅=   and  j

m

qj
j

qjq zWMC ⋅= ∑
≠
=1

        (22) 
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qSC  denotes the contribution of qz  to the residue qr  

and qMC  denotes the contribution f other than the 

q -th measurement to qr . Let 

 
qq

qnew
q W

MC
z

−
=  (23) 

so that 0=new
qr . With new

qz , we have: 

 
new
qq zz

j

m

j
ij

new
i zWr

==
⋅= ∑

1
, i=1, 2, ...,m (24) 

and 

 new
qjq

new
jq zWP ⋅= , j=1, 2, ...,m (25) 

Replacing qz by new
qz thus amounts to injecting a 

fictious error (correction) in qz which forces qr  to 

zero. This replacement modifies residue vector r  as 
above. The procedure can now be repeated with the 
new residue vector newr , obtained from equation 
(24) to give new sets new

rlS  and new
dlS .  

The intersection of these new sets yields a new 
suspected set new

sS  and so on. Poorest quality 

measurement from new
sS  is taken up for correction in 

each iteration. This process is applied until the 
suspected set becomes a null set. The final 
measurement vector is then claimed to be true 
measurement vector within a tolerance. 

6. ALGORITHM 

(a) Obtain the W  matrix, r  and nr  using equations 
(7), (6) and (14), respectively. 

(b) Obtain P  matrix using equation (8). 
(c) Sort nr  and select the largest residue max

nkr . 
(d) Obtain participation kjP , j=1,2,...,m. Choose a 

participation threshold pλ  and obtain a distortion 

set dlS using equation (15). 
(e) Calculate distortions id  for dli Sz ∈  using 

equation (11). 
(f) Choose a residue threshold rλ  and obtain rlS  

using equation (16). 
(g) Obtain sS from equation (18). 
(h) With appropriate values of 1α  and 1β  in equation 

(19), obtain the quality of measurements 
si Siq ∈, . 

(i) Correct the measurement corresponding to the 
largest iq  using equation (23), thereby obtaining 

new
qz . 

(j) Obtain newr  and new
nr  using equations (24) and 

(14). 
(k) Go to step (c) and continue iterations until rlS  

becomes an empty set. 
(l) The new measurement vector is claimed to be the 

true measurement vector. 

7. NUMERICAL RESULTS 

The tests were made in the IEEE-14 bus system 
(presented in detail in [17]). For the purpose of 
setting up experiments with different measurements 
and errors, it must be notes that masking occurs in 
case of interacting bad data, [18]. Masking is the 
process where two or more interacting grossly 
erroneous measurements add (subtract) each other's 
errors, resulting in large (small) residuals at the 
location of bad data [19]. The subtracted masked 
measurements are a challenge for identification, as 
they defy the statistical threshold. The standard 
deviation for computing the magnitude of gross error 
is taken as 0.02 times the magnitude of measurement. 
The following cases are discussed below: 

1) Additively masked data. 

2) Short line with subtarctively masked data. 

3) Small measurements containing gross errors. 

4) A combination of small and large measurements 
containing gross errors. 

For the purpose of operational ease, the following 
threshold were selected in all cases: alpha =1, 
beta=0.5. Participation threshold=20% of the largest 
participation in largest normalized residue; however 
the residue threshold was varied between 0.03 to 
0.06 of the largest distortion measurement. 

7.1. Additively Masked Data (Case 1) 

In this example the gross errors were injected in 
lineflow 1-2 and injection 1. The true values of 
measurements and the error magnitude are given in 
Table 1.1. Table 1.2 gives the grossly erroneous 
measurements of their residuals and quality factors in 
each iteration. It can be observed that the injection 
measurement 1 gets corrected to a value of 2.68 
which is closer to the true value of 2.32 than the 
given 1.32. Similarly, the lineflow measurement gets 
corrected to 1.79 from 2.59. Thus the corrected 
measurement is closer to true value. But it is 
observed that the quality of the measurements 
becomes good with a low quality factor. Also, their 
normalized residuals have become small. Therefore 
the iterations are stopped at this step. 
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Measurement  Sr. 
No. Type True Given 

Error in 
magnitude

1 I1 2.32 1.3243 0.9975 
2 F1-2 1.56 2.5955 -0.9645 

Table 1.1: Measurement and error 

Notations: 
Ix Injection at bus x 
Fx-y Line flow on line x-y 
It Iteration number 
M Measurement 
NR Normalized residuals 
QF Quality facotr 
 

Injection at bus 1 Line flow 1-2 It M NR QF M NR QF 
0 1.32 1.28 0.72 2.59 1.32 0.64 
1 3.34 0.0 0 2.59 0.37 0.27 
2 3.34 0.27 0.18 2.15 0 0 
3 2.91 0 0 2.15 0.2 0.11 
4 2.91 0.144 0.09 1.92 0 0 
5 2.68 0.0 0 1.92 0.10 0.06 
6 2.68 0 0 1.79 0 0 

Table 1.2: Measurement, normalized residual and 
quality factor in each iteration 

7.2. Subtractively Masked Data (Case 2) 

In this example the gross errors were injected in 
lineflow 1-2 and injection 1. It is also to be noted 
that this is a case of gross error in shortline 1-2 
associated measurement and the error magnitude are 
given in Table 2.1. Table 2.2 gives the grossly 
erroneous measurements, their residuals, the quality 
factors in each iteration. It should be noted that the 
normalized residual of injection 1 is very small and 
hence does not get included into the suspected set of 
measurements. Therefore, the only way out for 
subtractively measurements is repeated unmasking. It 
can be observed that the injection measurement 1 
gets corrected to a value of 2.137, which is closer to 
the value of 2.32 than the given value of 1.377. 
Similarly, the lineflow measurements get corrected 
to 1.92 from 0.56. Thus the corrected measurement is 
closer to true value. The iterations are stopped 
because the residues are smaller than the residue 
threshold. 
 

Measurement  Sr. 
No. Type True Given 

Error in 
magnitude

1 Injection 1 2.32 1.3778 0.9432 
2 Line flow 1-2 1.56 0.5603 0.9997 

Table 2.1: Measurement and error 

 
Injection at bus 1 Line flow 1-2 It M NR QF M NR QF 

0 1.38 0.04 0 2.59 - 0.16 

1 1.38 0.031 0.16 2.59 0.58 0.0 

2 1.86 0 0 2.15 0 0.11 

3 1.86 0.176 0.09 2.15 0.2 0 

4 2.14 0 0 1.92 0 0 

Table 2.2: Measurement, normalized residual and 
quality factor in each iteration 

7.3.  Small Measurements Containing Gross Errors 
(Case 3) 

In this example the gross errors were injected in 
lineflow 12-13 and injection 12. The true value of 
measurements, the given values of measurements and 
the error magnitudes are given in Table 3.1. Table 
3.2 gives the grossly erroneous measurements, their 
residuals and quality factors in each iteration. It 
should be noted that the measurements have small 
magnitudes, unlike those in case 1 and case 2. It can 
be observed that the injection measurement 12 gets 
corrected to a value of 0.0313, which is closer to the 
true value of -0.061 than the given value of -0.1648. 
Similarly, the lineflow measurement gets corrected 
to 0.0417 from 0.0162. Thus the corrected 
measurement is closer to the true value. Because the 
normalized residuals are below threshold, the 
iterations are stopped. This example, therefore, 
shows that this method can also be applied to small 
measurements containing errors. 
 
 

Measurement Sr. 
N
o 

Type True Give
n 

Error in 
magnitude 

1 I12 -0.06 -0.16 0.104 
2 F12-13 0.02 0.165 -0.148 

Table 3.1: Measurement and error 

 
Injection at bus 1 Line flow 1-2 It M NR QF M NR QF 

0 -0.16 0.13 0.02 0.16 0.02 0.05 

1 0.03 0 0 0.16 0.11 0.01 

Table 3.2: Measurement, normalized residual and 
quality factor in each iteration 
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7.4. Gross Errors in Small and Large 
Measurements (Case 4) 

In this example the gross errors were injected in five 
measurements. Table 4 gives the measurement type, 
given value of measurement, corrected value of 
measurement, true value of measurement, normalized 
residual and quality factor in each iteration. The 
measurement set contains both large and small 
errors. It should be observed that the method 
successfully identifies and corrects all the 
measurements to their true value. 
 

Measurement I
t Type Given Corre

cted True NR QF 

1 I1 3.34 2.22 2.32 0.7 0.47 
2 F6-13 0.78 0.2 0.18 0.5 0.13 
3 F2-5 0.042 0.37 0.41 0.4 0.08 
4 I14 -0.32 -0.15 -0.15 0.1 0.02 
5 I1 2.22 2.32 3.32 0.1 0.04 
6 F6-13 0.13 0.08 0.08 .05 0.006 

Table 4: Measurement, normalized residual and 
quality factor in each iteration 

7.5. Gross Errors in Small and Large 
Measurements (Case 5) 

In this example the gross errors were injected in 
seven line flow measurements. Table 5 gives the 
measurement type, given value of measurement, 
corrected value of measurement, true value of 
measurement, normalized residual and quality factor 
in each iteration. The method successfully identifies 
and corrects the measurements to their true values. 
 

Measurement I
t Type Given Corre

cted True NR QF 

1 F1-2 -1.07 -1.56 -1.58 0.44 0.218 
2 F2-3 0.37 0.69 0.733 0.29 0.095 
3 F2-4 0.56 0.5 0.559 0.23 0.066 
4 F2-5 0.41 0.38 0.413 0.22 0.056 
5 F6-13 0.32 0.17 0.178 0.13 0.026 
6 F6-12 0.21 0.06 0.078 0.14 0.016 
7 F6-11 0.21 0.055 0.074 0.11 0.018 

Table 5: Measurement, normalized residual and 
quality factor in each iteration 

7.5. Discussion of Results 

The examples show that the proposed method is 
quite attractive in the sense that it identifies and 
correct measurements at the same time. The choice 
of 11 =α  and 11 =β  in example 1 points to the fact 
that the residues in this example have been assigned 
dominant weightage, whereas the distortions are 
given much less importance. 
By assigning the participation threshold to be 10% of 
the largest element in row, corresponding to nr , in 
the participation matrix, the search for gross error 
has been localized, as can be observed from the set 
of measurements with large distortion quality factor. 
Those measurements with large residuals, which do 
not contribute to distortion in the largest residual, 
naturally get eliminated in the procedure. Thus, the 
proposed method has the inherent property of the 
localized search. By considering column elements in 
the form of distortions, the method is capable of 
identifying and correcting the grossly erroneous 
measurements.  
It is a common observation that the residues of all 
measurements in the vicinity of the largest residue 
also possess large residues. Therefore, the fact that 
masking exists is readily indicated by a low residue 
in the vicinity of the measurement with the largest 
residue. This has been the main consideration in the 
selection of values for 1α  and 1β ; however, further 
research is needed to establish criterion for deciding 
the values of 1α  and 1β . 

8. CONCLUSIONS 

In this paper, conventional relaxation procedure is 
modified and applied to the measurement residue 
equation to quantitatively determine the actual errors 
contained in the measurements. The gross error 
residue equation is looked upon as a set of objects 
and images related through the filters, namely, the 
elements of the residual sensitivity matrix, W . A 
pictorial presentation helps understand the 
mechanism of distortion. A participation matrix is 
formed. Distortion vector is then defined to 
determine the measurement quality. Noting that 
residues shall all be zero with a set a perfectly true 
measurements, the proposed method sequentially 
corrects the measurements by injecting a fictious 
error in order to nullify the residues to zero. Quality 
of measurement is employed to determine this 
sequence. In essence, a modification is incorporated 
in relaxation technique, concerning the sequence of 
measurement correction. 
The procedure employs a set theoretical approach for 
segregating the grossly erroneous measurements. The 
choice of 1α  and 1β  and other threshold need 
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further investigation. Concepts of under-correction 
and over-correction can also be examined, depending 
on whether the residue is forced, not to zero, but to a 
value greater or less than zero. This has a strong 
relevance to additive and subtractive masking that 
may be present in the system. Even employing the 
normal correction, as here, the procedure has been 
successful in unmasking the interacting grossly 
erroneous measurements. The method ultimately 
corrects the grossly erroneous measurements to their 
true values within a tolerance. 
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