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Abstract – The paper discusses the radiative heat transfer 
between two cylindrical ideal surfaces mounted coaxially. 
This layout is frequently used in many thermal 
engineering applications. 
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1. INTRODUCTION 
 

The radiative heat transfer occurs in many engineering 
applications, such as power generation and high – 
temperature industrial processes. The advent of space 
age over the past thirty years brought the necessity to 
design tools to predict heat transfer in applications like 
rocket nozzles, reentry vehicles and space vehicles in 
vacuum. In an important number of cases the radiative 
heat transfer analysis needs to be performed for a 
radiatively non-participating medium and interaction 
with other heat transfer modes must be taken into 
account. Whatever the other heat transfer mode, the 
system requires non-isothermal boundary conditions, 
leading finally to complex integro-differential 
equations which can be solved almost exclusively by 
mean of numerical methods. The paper considers such 
an example of coupling radiation with convection for 
non-isothermal boundary conditions – that is fluid 
flow with heat transfer. Heat transfer between hot flue 
gas and cold water separated by a closed radiative 
enclosure that houses a radiatively non-participating 
medium, is analyzed. A mathematical model for the 
coupled radiative convective heat transfer is developed 
and a numerical algorithm for solving of heat transfer 
equations is proposed. 

 
2. DESCRIPTION OF THE GEOMETRY 
CONSIDERED 

 
The system analyzed in this paper serves as a starting 
point for generalization of the radiative heat transfer in 
enclosures consisting of surfaces with partial mutual 
visibility. It consists of two cylindrical radiative 
surfaces mounted coaxially. The inner surface is 
heated by a hot gas flow and the outer surface is 
cooled by an external water flow. The two radiative 
surfaces are separated by air. The system is designed 
so that non-isothermal conditions for the two surfaces 
are fulfilled. The high temperature of the flue gas 
ensures a large value for the difference of temperature 

between the two surfaces so that the radiative heat 
transfer has a much greater contribution to the overall 
heat transfer rate than natural convective heat transfer 
does. At the ends two flanges close the radiant 
enclosure. 
 

 
The conjugated heat transfer system is depicted in 
cross section in figure 1. Axial flow of the two thermal 
agents ensures one-dimensional distributions of 
temperature: 

)(11 zTT ff = , )(22 zTT ff =  

)(11 zTT = , )(22 zTT =  
 
 

3. THE MODEL 
 
A series of simplifying assumptions are considered in 
order to reduce the complexity of the heat transfer 
problem. Though, the generality of the problem is not 
affected to an important extent by these assumptions: 

- Temperature drop in the wall of the hot duct is 
neglected. 

- The two radiant surfaces are considered black 
( 1=ε ) 

- Axial heat conduction for the two fluids is 
neglected 
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Figure 1: Cross section of the heat transfer system 

1- Hot flue gas duct 
2- Water-cooled duct 
3- Enclosure of the water space 
4- Insulation 
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- Natural convection which occurs due to the 
presence of air between the two ducts is 
negligible in comparison with radiative heat 
transfer  

- Axial heat conduction in the ducts is neglected. 
The heat transfer equations, on the assumptions made 
above, are the following: 
Flue gas: 

( ) +⋅+= dzTcAu
dz
dTcAuTcAu fpfpfp 111111111111111 ρρρ  

11 dSq ⋅+  (1) 
Flue gas duct: 

( ) 111111 dSqdSTTf ⋅=⋅−α  (2) 
Cooling agent (water): 

( ) +⋅+= dzTcAu
dz
dTcAuTcAu fpfpfp 222222222222222 ρρρ

22 dSq ⋅+   (3) 
Cooling agent duct: 

( ) 222222 dSqdSTT f ⋅=⋅−α  (4) 

In equations (1) and (3) 1q  and 2q  are the radiative 
heat flux densities on the surfaces 1 and 2 respectively 
(figure 1). 
For diffusely emmiting, black surfaces, the radiative 
heat flux density in a point described by the vector 

coordinate r  is given by the following equation [1]: 
)()()( 4

0 rHrTrq −=σ  (5) 
The irradiation of an elementary area dA  belonging to 
an enclosure consisting of n is given by: 

∫
=

−=

∪
n

j
jS

dAdAdFrTrH

1

'
4

0 )'()( σ
 (6) 

in which 'dAdAdF −
 is the infinitesimal view factor 

between dA and 'dA  respectively. 
The irradiation of an elementary area dA  can be easily 
determined if view factors between the elementary 
area considered and the rest of elementary areas 'dA  
which compose the radiative enclosure are known. 
The radiative heat flux density on the elementary area 

dA  having the vector coordinate r  takes the following 
form: 

−=−= )()()()( 4
0

4
0 rTrHrTrq σσ  

∫

≠
=

−−

∪
n

kj
j

jS

dAdAdFrT

1

'
4

0 )'(σ
 (7) 

Index k designates the surfaces that are not visible 

from the r  vector coordinate point. It can refer to the 
surface to which elementary area dA  belongs if this 
surface is convex. 
Due to the symmetry of the heat transfer system 
considered and the initial assumptions the 
temperatures of the two agents and of the heat transfer 

surfaces varies axially and the temperature of the end 
flanges varies radially. 
Under these circumstances the domain of analysis is 
divided in axial direction into a  n  knots mesh having 
the size z∆ . The end flanges are also divided into a 
m knots mesh having the size r∆ . 
The isothermal elements generated by the mesh are 
cylindrical for the flue gas and water ducts and annular 
for the end flanges. All elements have the same 
symmetry axis with the overall heat transfer system. 
Although the surface elements defined in this manner 
are isothermal, there is no complete mutual visibility 
between all elementary areas that compose the surface 
elements. This situation leads to the necessity of 
redefining the view factor; the new concept is 
introduced in [2] and is called obstructed view factor. 
The definition is similar to the standard view factor 
[1]: ratio between diffuse energy leaving the element 

idS  directly toward visible zones of 
jdS (and 

consequently intercepted by 
jdS ) and the total diffuse 

energy leaving the surface element 
idS . 

This paper quotes an example [2] of such a obstructed 
view factor – that is from a surface element on the flue 
gas duct dzRdSi ⋅= 12π  having the axial coordinate iz  
and a surface element from the water-cooled duct 

dzRdS j ⋅= 22π  having the axial coordinate jz . 

The surface element dzdRdAj ⋅= θ2
 having the 

angular coordinate θ   situated on surface 2S is 
visible from surface S1 from the elementary areas 

dzdRdAi ⋅= ϕ1
 situated on the arc ϕ∆  marked on 

the drawing (figure 2). 
The heat flux radiated by the surface element 

dzRdSi 12π=  is:  
4

02
4

0 2 iiidS TdzRdSTdQ
i

σπσ ⋅=⋅=→
 (8) 

The view factor between the elementary area 
belonging to the surface element from S1, visible 

Figure 2: Angular visibility interval between elementary area 

jdA on  S1 and a surface element dzR ⋅12π  
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from B (figure 2), denoted dzRdAv
i ⋅∆= ϕ1

 and 
elementary area dzdRdAj ⋅= θ2

 can be computed 
using the standard formula of the view factor [1]): 

j
dA

i
ji

v
i

SS
dAdA

dAdA
sdA

dF
v
i

j
v
i 











= ∫−

→ 2

coscos1
21

π
θθ  (9) 

The heat flux radiated by the elementary area 
v
idA  and intercepted by elementary area 

jdA  is 
given by: 

 
( ) =⋅⋅= −

→→
214

0
SS

dAdA
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The heat flux intercepted by the surface element  
dzRdS j ⋅= 22π  is: 

=











⋅⋅⋅= ∫→

v
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j

dA

ji
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At this point it should be mentioned that the 
integration was carried out over the angular interval 
[ ]ϕ∆,0  instead of [ ]2,2 ϕθϕθ ∆+∆− , because the 
value of the integral does not depend on  θ . 
The obstructed view factor between 

idS and 
jdS is: 
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=

⋅
==
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= 22

coscos  (12) 

Simple geometrical considerations (figure 2) give the 
value of ϕ∆ , which is ( )21arccos2 RR=∆ϕ . 

The distance s between the centers of elementary areas 
idA  and 

jdA  can be computed using the formula 
(figure 3): 

( ) ( ) ( )222
ABABAB zzyyxxs −+−+−=  (13) 

The angles iθ  and 
jθ  can be computed using the 

formula: (figure 3): 

i

i
i

nAB
nAB
⋅

⋅
=θcos  (14) 

in which: 
-  AB  is the vector with the s  modulus between the 
centers of elementary areas idA  and 

jdA  oriented from 
the center of idA  towards the center of 

jdA . In 

Cartesian coordinates, AB  can be expressed as: 
( ) ( ) ( )kzzjyyixxAB ABABAB −+−+−=  

Hereinafter, the Cartesian coordinates will be 
converted to cylindrical coordinates. 
The obstructed view factors between elements situated 
on other surfaces ji

ji

SS
dAdAdF −

→
 are computed in a similar 

manner. Their final forms are the following 
 

Flue gas duct – flanges: 

ϕ
π

θθ

ϕ

d
s

drrdF jiSSS
dAdA j

v
i ∫

∆

−
→

⋅⋅= 2
)( coscos

431  (15) 

Water –cooled duct – flue gas duct: 

∫
∆

−
→ ⋅=

θ

θ
π

θθ
d

s
dzRdF ji

d
SS

dSdS ij 2

coscos
12  (16) 

Elements from the water-cooled duct: 

∫
∆

−
→ ⋅=

ϕ

ϕ
π

θθ
d

s
dzRdF jiSS

dSdS ji 22

coscos
22  (17) 

Water-cooled duct - flanges: 
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Figure 3: Distance between dAi and dAj and angles 
iθ  and 

jθ  
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∫
∆

−
→ ⋅=

ϕ

ϕ
π

θθ
d

s
dzrdF jiSSS

dSdS ji 2
)( coscos

432  (18) 

Flanges – flue gas duct: 
             ∫

∆

−
→ ⋅=

ϕ

θ
π

θθ
d

s
dzRdF jiSSS

dSdS ij 21
)( coscos

143  (18) 

Flanges – water –cooled duct: 
             ∫

∆

−
→ ⋅=

θ

θ
π

θθ
d

s
dzRdF jiSSS

dSdS ij 22
)( coscos

243  (19) 

Elements on flanges 
              ∫

∆
−
→ ⋅=

θ

θ
π

θθ

0
2

coscos
43 d

s
drrdF ji

i
SS

dSdS ij

 (20) 

The basic equations that describe the heat transfer 
process become: 
For the flue gas: 
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−

L
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Flue gas duct: 
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Cooling agent (water): 
 

( )
−−= ∫ −

−

L
SS

zzji
ifp

ji
dFzTzT

dz
zdT

P
cAu

0

4
10

4
20

2

2

2222 12)()( σσ
ρ  

 −−− ∫∫ −
−

−
−

R

R

SS
rzj

L
SS

zzj

d

jiji
dFrTdFzT 3222 )()( 4

30
0

4
20 σσ  

 ∫ −
−−

R

R

SS
rzj

d

ji
dFrT 42)(4

30σ
 (23) 

In (21) and (23) 1P  and 2P  are the values of perimeter 
of the flow sections for flue gas and water respectively  
Water cooled duct: 
 ( ) −−=− ∫ −

−
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 (24) 
 
4. CONCLUSIONS 
 
A four-equation analytical model for the conjugated 
heat transfer convection – radiation was developed. 
The system consisting of four equations containing 
non-linear and integral terms can be solved applying 
numeric techniques. The approach used in this paper 
was focused on the study of radiative heat transfer in 
systems of surfaces that obstruct partially each other’s 
visibility. 
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