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Abstract — This paper deals with an automatic system
for a jet engine’s speed control, which uses a
differential pressure controller coupled with the
engine’s fuel pump. One has established the system’s
non-linear mathematical model, the linearised and the
non-dimensional mathematical model; based on this
model, the block-diagram with transfer functions and
the system’s transfer function were issued. A stability
study was performed, which has determined the
system’s stability domains; system’s quality was also
studied (some simulations were performed), based on its
step response, considering the throttle’s position as
input and the engine’s speed as output, for the
maximum engine’s operating regime. The co-efficient
ensemble was determined for a single-spool jet engine
RD9Y- type.

Keywords: jet engine, speed, fuel, pressure, control,
actuator, slide valve, throttle.

1. INTRODUCTION

For an aircraft gas-turbine engine, particularly for a
jet engine, the speed n control is one of the most
important issues, both for various flight speeds and
flight altitudes, and it’s currently realized using
specific hydro-mechanical and/or electro-mechanical
controllers. This paper deals with such a controller,
which assures a constant value of the dosage valve’s
differential pressure, the fuel flow rate amount O,

being determined by the dosage valve’s opening.

As figure 1 show, a rotation speed control system
consists of four main parts: I-fuel pump with
plungers (4) and mobile plate (5); II-pump’s actuator
with spring (22), piston (23) and rod (6); III-
differential pressure sensor with slide valve (17),
preset bolt (20) and spring (18); IV-dosage valve,

2
‘o
o
9 10 11 12 1 e
I v
(o)
ful v 2-Q I ya
8 <(to the combustor’s\igjectors) Q, % 14
7 QPQB Qr Ql QA
/ 9, )|
5 e — : //W’/
= o
n 2 R
_ QsB p 17
i 18
3 - (&)
= X
— A
2 X | 1) S}
1 = /> A 19
4 1 20
6 O 0<y<0 21
11 1 sB 22
6 15 25 24 23 (k,)
FUEL TANK

Figure 1: Engine’s speed control system’s functional diagram
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Figure 2: System’s functional diagram

with its slide valve (11), connected to the engine’s
throttle through the rocking lever (13).

The system operates by keeping a constant difference
of pressure, between the pump’s pressure chamber (9)
and the injectors’ pipe (10), equal to the preset value
(proportional to the spring (18) pre-compression, set
by the adjuster bolt (20)). The engine’s necessary fuel
flow rate Q, and, consequently, the engine’s speed 7,
is controlled by the co-relation between the
p, =p.—p, differential pressure’s amount and the
dosage valve’s variable slot opening (proportional to
the (13) rocking lever’s angular displacement 6).

A functional block diagram of the system is presented
in figure 2.

2. SYSTEM’S MATHEMATICAL MODEL

2.1. System’s motion non-linear equations

The non-linear mathematical model consists of the
motion equations for each above described sub-sys-
tem, as follows:

a) fuel pump flow rate’s equations

0,=0,ny), (1)
Qp:QA+QB+ i (2)
b) pressure sensor’s equations
0, =ub (x,+x)02p " p.—p, 3)
ﬂdz
zﬂde‘\lzpil NP = Ps > 4)

2

S.(p.=p)=m.— +r§—+k (z+x,+x), (5)
¢) fuel pump’s actuator’s equations

dp dy

Q=-Qu=P = =S5 ©
de s
Vo s 7
0, -0,=p Sy & (7
;] —~

=H, 4 Vzp VP~ P> (8)

Q,=ub(x,+x)02p" \/p.— P,

m d2y+§d—y+k (v +),(10)
vg Ty TR ),

©)

SBpB _SApA =

d) dosage valve’s equation

) -
Q =ubr, —=~2p"Jp.~p.. (1)

e) jet engine’s equation (for the rotation speed n)
n=n(Q,p.T,), (12)

where 0,.0,,0,.0,.0,,.0,, are fuel flow rates, p, -
pump’s chamber’s pressure, p,-fuel’s injection pres-

Ps-
actuator’s B chamber’s pressure, p, -low pressure’s

sure, p,- actuator’s A chamber’s pressure,

circuit’s pressure, u,,u, , p, -flow rate co-efficient,
d,- (21) and (24) drossels’ S8, -
piston’s surfaces, S, ~S,, S, -slide valve’s frontal

diameters,
surface, b -sensor’s slide valve’s slot width, b,-

dosage valve’s slide valve’s slot width, &,k -spring

ea”

elastic constants, V,, -actuator’s active A chamber’s
volume, V,, -actuator’s active B chamber’s volume,
p -fuel’s p -fuel’s

density, & -viscous friction co-efficient, m,-actuator’s

compressibility co-efficient,

mobile ensemble’s mass, m,-pressure sensor’s mobile
slide valve’s mass, &-dosing valve’s lever’s angular
displacement (which is proportional to the throttle’s
displacement « ), 7, - (12) driving wheel’s radius, x-
sensor’s slide valve’s displacement, z-sensor’s spring
preset, y-actuator’s rod’s displacement, p;,T, -jet

engine’s inlet’s gas-dynamic parameters (total
pressure and total temperature).

So, the above described 12 non-linear motion
equations are building the system’s non-linear

mathematical model.

2.2 Linear mathematical model

Assuming the small-disturbances hypothesis, one can
obtain a linear form of the model; so, assuming that
each X parameter can be expressed as
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2 n
X:X0+%+(A§) +...+(AX) ,
n

(13)

(where X, is the steady state regime’s X-value and
AX -deviation or static error) and, neglecting the
terms which contains (AX),7 > 2, one obtains a new

form of the equation system (2)...(11), particularly in
the neighborhood of a steady state operating regime,
as follows:

AQ, =AQ, +AQ, +AQ,, (14)
AQ, =k, Ax+k, (Ap. —Ap,), (15)
AQ, =k, Ap,, (16)

AQ, =k, (Ap. —Ap,), (17)
AQ, =k, Ax+k,,Ap, (18)
AQ =k, AO+k (Ap. —Ap,), (19)

kAxAx—’_ kAc(A c _ApA)_kSAAApA = ﬂVAO %APA -

_SAiAy,

pm (20)

d
_kaAx+kBL'(ApC _ApB)_k.vBBApB :ﬂVBO EAPB +

d
+8,—Ay, 21
s Y @
d’ d
S, (Bpe = Ap)=m - Ax E—- Axt k(A2 + A¥) (22)

2
P dzz

In the above equations one has used the annotations

S,Ap, — S Ap, =m Ay+§%Ay+ku,Ay. (23)

2 -1
ky=1b 20" NPy = Pao ok = y}vbs(xs“%—p’
Vv Pco = Pao
;2P md?  y2p
ksAA =H, 411 ,kBC =u, 8d —
2VPu Pco ~ Pso

(xx X, )\/ 2p"
Vrw

ky = %\/ 2p" \Peo = P>

P (6, -0 W2p" .
: 4 2\/ Pco = Pio

For a steady state regime, the fuel flow rates through
the drossels and the sensor’s slots are
equal,Q,, =0, and O, =0,,; meanwhile, the

ky, = pb, Vzpil Pios Ky = 1.,

24

pressure values in the actuator’s chambers must
satisfy the balance equation

Pao = Pso T Vos (25)
SA
respectively in the sensor’s chambers
k&
P =Pyt (5 +%,) (26)

sV

The equations (24) and (25) are giving the pressures
expressions for the steady state regime, as follows

k y+1
= ey T 27
Pco s, Yo 71 27
k V4
= e , 28
Pao=g"h (28)
k 1
Pu =N (29)
“16b°x
where yz(&J —.
u,) md,

One chooses the geometry of the drossels (21 and
24), respectively of the sensor’s slots, in order to
satisfy the relation

d =2 1b i('xmax_xmin) ,
S T

so that k,.~k,..
chambers’ volumes, as well as the actuator’s piston
surfaces, could be considered as having very close
values (VAO =V, S, = SB) and adding the equation
(20) to the multiplied by (-1) equation (21), one
obtains

(30)

Assuming that the actuator’s

(kAx + kEx )Ax + (kAC + kAAA )(ApE - ApA) +

d d
+ BV, —(Ap. —Ap )=-28 —Ay. (31
BV dt( P, —Ap,) Y 3D

From the equations (14), (15), (17) and (19) it results

AQ, =k,AO+k, Ax+k (Ap. —Ap,)+
ke ko )Ape =k, cdp 4k Ap,). (32)
According to the above observations and
assumptions, one obtains
(ke + Ky )Ape = (K, Ap +kyrp,), (33)
so the equation (32) becomes
AQ, =k,A0+k, Ax+k, (Ap.—Ap,). (32)

The equations (31), (32)), as well as the equations
(19), (22) and (23), with the annotations (24), are
building the system’s linear mathematical model.
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2.2. Non-dimensional mathematical model

. . .= AX
Using the generic annotation X =——, the above
0

mathematical model can be transformed in a non-
dimensional one. After applying, for each of the
above mentioned equations, the Laplace transformer,
one obtains the mathematical model’s non-dimen-
sional linearised form, as follows

kﬂj + (Tps + IXp_B - p_A)z —7,5y, (34)

Po—p, =k, (T8 +2T ws+1)5,  (35)

pe-p =k, (T2 +2T ws+1)F+k,7,(36)

0 =kd+k,5+k, (p.— D). (37)
0, = k0 +k,(p. 7)), (38)
where the new system’s co-efficient are
(kAx + ka )'XO _ ﬂVAO
o ’ Tp - s
(kAC - ksAA )pco (kAC - ksAA )pco
- 280 . koY, T = .
(kAC - ksAA) o S:\‘pco k@a
Zvao :i, kpic: kesxo , k[: — kesZO , kg — kfaeo ,
‘ keu S.wpo Ssvp() on
k — kAxx(J s k — kicp(f() s 7’<‘V — ms s 2]';[00 — i .(39)

Qp 0 kea kes

Adding the non-dimensional equation for the fuel
pump and for the engine (engine’s speed equation)
[5,7]

0, =k, n+k,y, (40)

(r,s+ 0T =kQ +kyp, (41)

one obtains the system’s linear non-dimensional

mathematical model, which is the source for the
block diagram with transfer functions in figure 3.

For a constant flight regime, the term k,, p, in eq.
(41) becomes null.

3. SYSTEM’S TRANSFER FUNCTION

The equations system (34)...(38), (40) and (41) can
be simplified, keeping the same form in (39) for the
co-efficient, if one assumes some plausible new
hypothesis, such as: 1) the fuel’s incompressibility
(8 ~0), which means 7, =0; 2) the viscous friction

is very small (£~ 0), which means 27w, =—==0

g

and 2T,w, =—>=0; 3) small mass values (m ,m )

y k P s
and, consequently, negligible inertial effects, which
means 7, =0,7, =0.

The new equation system is

(cs+1)p, - p, )=k, %, (42)
PP, =k, (43)

I -

F=—(p-p )2z, (44)
e
po-p=—0 kG -kT). @5

op
0=0,-k0, (46)
0, =k a+k,y, (47)
(c,s+1)T =k O, . (48)

The simplified block diagram with transfer functions,
based on the above model, is presented in figure 4.
The equations (42)...(48), after eliminating the

On7] - 9 |k iy Tl
7,5+1
— - —_ + k n
= - + DD 1 + 0, -
4 (] _1 -
—k 2 k, 2 ) > i
p
- + »
i
1 I 1 3 1 | BP 1 v,
k. (@2s* +20,T,5+1) x rs+l ks +20,T 5 +1)
7,8 }7
(.8 |

Figure 3: System’s block diagram with transfer functions
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Figure 4: System’s simplified block diagram with transfer functions

leading to an unique equation:

(kp‘.[ +k,, )% (Tps N 1)TMS + k((ll;ykckpn) T ZCH -
=k.z+ (k,,fc +k,, )% (rps + 1)5 . (49)

X py

System’s transfer functions is H,(s), with respect to
the dosage valve’s rocking lever’s positiond. A
transfer function with respect to the setting z, H_(s),

is not relevant, because the setting and adjustments
are made during the pre-operational ground tests, not
during the engine’s current operation.

So, the main and the most important transfer function
has the form below

[t/

Hﬁ(s): 2 B
g, t85+¢g,

(50)

where the involved co-efficient are
fl = k(‘k[}z-p’ fo = k(k(/’ &, = TpTM’

k k
—kk )vr,|1-—r

pic

px py

k,k +k,)

AB pic Ox

g =(-kk,)- (51)

4. SYSTEM’S STABILITY

According to the system’s transfer function form, the
characteristic polynomial is a second degree one. So,
in order to study the system’s stability, one can use
an algebraic criterion, Routh-Hurwitz, which imposes
for stability that all the polynomial co-efficient must
be strictly positive; so, that means that one obtains
the inequalities:

7,7, >0, (52)

obviously, always realized, because both 7, andz,

are strictly positive quantities, being time constant of
the actuator, respectively of the engine,

=k )re,| 1——tefn 120, (53)
! o " kAB kpic + ka ’
k, k
(1-kk, )-—r2t2 50, (54)
" kAB kpic + ka

According to [5] and [7], the factor 1—Fk k, is a

very important one, because its value is the one who
gives information about the stability of the
connection between the fuel pump and the jet
engine’s spool (rotor). For the actually operating
engines, there are two cases involving it:

a) 0<kk <1, when the connection between

c “pn
the fuel pump and the spool is a stable object;
b) k k >1, when the connection between the

Hopn
fuel pump and the spool is an unstable object
and it is compulsory to be assisted by a speed
controller.

Each case will be studied separately.

Casea) 0<kk,<1,s01-kk, >0

o pn
Replacing the co-efficient in (54) by their
expressions, given by the annotation sets (24) and

(39), one obtains
ubS, (7 +1) 9,0,

kt’ﬂ -
SA(;/—l)Zxo(l —kc,kp,,(,usbsjoco —%,uddf\/;)
b, |—2H Je +
ﬂgA(y_l)
+ S.prO()/-i_l) p <km, (55)
V= —RHKL, ) H, o = H AT
(-1 kk[b Y d?fj
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Figure 5: System’s stability domains with respect to
the springs’ elastic constants (case k. k, <1)

which gives the condition for choosing the elastic
constants k, and k, of the (18) and (22) springs, in

order to ensure the stability, as shown in figure 5.
Condition (54) being accomplished, it results that

pxpy

- 56
kABikpic +kQXi (56)

>kk, >0,

which means that the co-efficient of 7, and 7, in (53)

are both positive, so this condition is always
accomplished.
Consequently, the stability condition for the system is
(55) and the stability domains are shown in figure 5.
One can also observe that, if the fuel pump actuator’s
spring is missing, which means thatk, =0, the
minimum value for the differential pressure sensor’s
spring is given by

(k) =

S,0,(r+1)

(-1 - kfk,m{ﬂsbm —%ﬂddf N j

corresponding to the point A, on the ordinates axis, in
figure 5.

- (57)

Case b) kk, >1

The condition (54) offers, in this case, an expression
similar to (55) and the stability domains as figure 6
shows. One can observe that the unstable domain
corresponds to the interval of very small values of the
spring’s constants, which means that the usual values
k, and k, are in the stable domain.

The condition (53) becomes

k k
1— pxVpy
T“[ ik +k)

pic Ox

~1), (53)

} >t (KK,

which gives
k k

px py

. - ok, + Ky

58
’ (kk, —1) 8

z-M >

or, if one considers the expressions (24) and (39), it

S/

T

fr = ﬂxbx [keuy() + SA (7/ - l)xo ]Ssv(}/ + 1)2 on s

becomes, as generic expression, 7, <=7, , where
» )

T
g = xoyo(u.\,bxm - Zuddﬁ N )(7 ~[k,.S,(y-

~1)Q,,+ 4b,S vk, (y+1)]. (59)
If one uses the annotations
a=kk -1 b= o s 60
o kABikW +k,, ' (60)
the condition (58) becomes
7, < 1_brM, (61)
a

which represents a semi-plan in a co-ordinate system
(‘[M,rp), as figure 7 shows.

Meanwhile, the characteristic polynomial can be
expressed, using the annotations (60), as
r 7,8 +|(1-b)r, —az’p}s—(a+b).

P

(62)

The condition for the non-periodic stability is that the
above polynomial’s roots are real and negative,
which means

2
[1-)e, —az }+4r2,(a+b)>0,  (63)
A
Nk
3500
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Figure 6: System’s stability domains with respect to
the springs’ elastic constants (case kk, >1)
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Figure 7: System’s stability domains with respect to
the time constants z,, , 7, (case k. k, <1)

l(l -b), - aer

7,0

<0. (64)

The condition (64) is accomplished, being the same
as (53), so (63) remains the unique condition for non-
periodic stability, which leads to

DLl )20 B v all= D)5}, (69
T a

M

Lo L ban)rab JHa v al+ )+ 5]} (66)
T a

M

The above presented inequalities represent 2 semi-
planes, as figure 7 shows. One can observe that the

linez, :iz{a(l +b)+2b+[bla® +a(1+b)+ b]}z’M is
a

developed in the unstable domain. The other line,
T, :iz{a(l+b)+2b—\/b[a2+a(1+b)+b]}z’M, be-
a

longs to the stable domain and represents the border
between the periodic and the non-periodic stable
domain.

5. ON SYSTEM’S QUALITY

As the transfer function form shows, the system is a
static one, being affected by static error.

One has studied/simulated a controller serving on a
single spool jet engine (VK-1 type), from the point of
view of the step response, which means the system’s
dynamic behavior for a step input of the dosage
valve’s lever’s angle 6.

According to figure 8, for a step input of the
throttle’s position o, as well as of the lever’s
angle @, the differential pressure p, = p. — p, has an

initial rapid lowering, because of the initial dosage
valve’s step opening, which leads to a diminution of

LPc,

0.05

0.04

0.03

0.02 /

0.01
A

-0.01 /

-0.02 /

-0.03 f

-0.04 }

-0.05 ! i
0 1 2 3 4 5 6

Figure 8: System’s differential pressure’s
P, = p. — p, step response

the fuel’s pressure p. in the pump’s chamber;

meanwhile, the fuel’s flow rate through the dosage
valve grows. The differential pressure’s recovery is
non-periodic, as the curve in figure 8 shows.
Theoretically, the differential pressure’s re-establi-
shing must be made to the same value as before the
step input, but the system is a static-one and it’s
affected by a static error, so the new value is, in this
case, higher than the initial one, the error being 4.2%.
The engine’s speed has a different dynamic behavior,
depending on the £k, particular value.

One has performed simulations for a VK-1-type
single spool jet engine, studying three of its operating
regimes: a) full acceleration (from idle to maximum,
that means from 0.4xn__ ton_ ); b) intermediate

max max

acceleration (from 0.65xn_ ton, ); c) cruise acce-

max

leration (from 0.85xn_ ton,_, ).
If kk, <1, so the engine is a stable system, the

cVpn
dynamic behavior of its rotation speed # is shown in
figure 9. One can observe that, for any studied

An
0.07

0.06 — =
2T
///
0.05 / el

72 = (0,85 = 1,00)xn/. .

0.04

7,
/'/
7/
0.03 :

B n=(0,40 - 1,00)xn_

0.02

0.01

tlsl

0
0 1 2 3 4 5

Figure 9: System’s speed n step response (kck,,n < 1)
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Figure 10: System’s speed n step response (k(k mZ 1)

regime, the speed n, after an initial rapid growth, is
an asymptotic stable parameter, but with static error.
The initial growing is maxim for the full acceleration
and minimum for the cruise acceleration, but the
static error behaves itself in opposite sense, being
minimum for the full acceleration.

If kk, >1, the dynamic behavior of its rotation

speed n is shown in figure 10. Even in this case, after
an initial rapid growth, the speed is an asymptotic
stable parameter, but with small static error. The
initial growth is higher than the stabilization value, as
higher as the acceleration is more intense. The static
error is nearly constant, being around 4.5%.

6. CONCLUSION

One has studied a speed controller for a single spool
jet engine, based on the control of the fuel pump’s
differential pressure’s control. System’s non-linear,
linearised and non-dimensional mathematical models
were presented, as well as the block diagrams and the
transfer function.

After performing the stability studies, based on
algebraic criteria, some important conclusions could
be drawn.

If the couple engine-fuel pump is a stable connection,
whole system’s stability can be assured by choosing
properly the actuator’s and the pressure’s sensor’s
spring, from their elastic constant’s values k, .k,

point of view.

Otherwise, one must choose properly the time
constant’s value 7, for the actuator, according to the

jet engine’s time constantz, . Therefore, in order to

ensure the stability, the actuator’s time constant must
be at most third part of the engine’s time constant

T L o .
7, < TM ; for the non-periodic stability, the condition

. . . T
is more restrictive, being around 7, STM. The

bigger is thek k, value, the smaller must be the
actuator’s time constant. The 7, value can be chosen,

[see 7,8], by an appropriate choosing of its drossel’s
diameters as well as its geometric and functional
parameters (S, k,, , etc).

For an engine VK-1-type, who is a stable system,
having k k <1, the studied rotation speed’s control

o
system assures the non-periodic stability, engine’s
speed n being an asymptotic stable parameter. Even
if, hypothetically, the studied engine-fuel pump
connection would become an unstable system, the
rotation speed controller could assure the stable
behavior.
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