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Abstract  This paper deals with an automatic system 
for a jet engine’s speed control during its 
acceleration/deceleration, independent of the engine’s 
fuel pump, but connected to the engine's (single) spool. 
Starting from the functional scheme and the functional 
block diagram, one has established the system’s non-
linear mathematical model, the linearised and the non-
dimensional mathematical model; based on this model, 
the block-diagram with transfer functions and the 
system’s transfer function were issued. A stability study 
was performed, which has determined the system’s 
stability domains. 
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1. INTRODUCTION 

Modern aircraft gas-turbine engines, particularly the 
jet engines, have as most important controlled 

parameter the speed n, both for various flight speeds 
and flight altitudes. The control parameter is, for 
most of the systems, the injection fuel flow rate .

Especially during the dynamic regimes (for example 
the starting regime and the acceleration/deceleration 
regimes), a very important matter is also its variation 

speed,

iQ

t

Q

d
d i , because of the possible side effects 

concerning the combustor gases’ temperature, which 
can overheat the turbine’s blades. So, the speed 
control systems, based on the injected fuel flow rate 
control, must be completed with additional fuel 
control systems based on another control parameter, 
such as the air flow rate, the fuel’s injection pressure, 
the compressor’s total (or static) pressure ratio, or the 
engine’s speed itself. 
Figure 1 shows a constructive-functional scheme for 
an acceleration controller, based on the injected fuel 
flow rate’s control, with respect to the engine’s 
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Figure 1: Controller’s constructive-functional scheme 
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rotation speed. The engine’s acceleration controller’s 
main parts are, as follows: a) engine’s speed 
centrifuge transducer; b) single active chamber 
actuator, with c) rigid feed-back; d) slide-valve com-
mand organ; e) fuel dosage rotation valve. 
The controller operates opening/closing the dosage 
valve, according to the engine’s speed’s increa-
sing/decreasing value. 

2. SYSTEM’S MATHEMATICAL MODEL 

2.1. System’s motion non-linear equations 

The non-linear mathematical model consists of the 
motion equations for each above-mentioned subsys-
tem, as follows: 

- speed centrifuge transducer’s equation 
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- flow rates’ equations 
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- C pressure chamber’s equations 
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- M pressure chamber’s equations 
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- A pressure chamber’s equations 
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- slide-valve’s equation 
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- actuator’s equation 
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where is the axial force due to the centrifuge 

masses rotation, which expression is, according to [7] 
and [8], 

cpF

2
21, nxKKxnFF cpcp ; MCA ppp ,,

pressures; 1,, SSS AC pistons’ surfaces; -supplying 

pressure (assumed as constant);  pressure 

chambers’ volumes; 

ap

MCA VVV ,,

fluid’s compressibility co-

efficient; fluid’s density; rQQQQQ ,,,, 9321 fluid 

flow rates; r,, 91 flow rate’s co-efficient; bL,

slide valve’s slot width; drossel’s diameter; 9d -

viscous friction co-efficient, actuator’s mobile 

ensemble’s mass,
2m

1m pressure sensor’s mobile slide 

valve’s mass; -spring elastic constants; x-

sensor’s slide valve’s displacement; z-transducer’s 
slide valve’s displacement; u-pressure sensor’s spring 
preset; y-actuator’s rod’s displacement, v-lug’s 
displacement; 

876 ,, kkk

4k rigid feed-back’s co-efficient, 

based on the cam’s profile. 

2.2 Linear mathematical model 

The above-described 14 non-linear motion equations 
are building the system’s non-linear mathematical 
model, very difficult to be used for studies. 
Assuming the small-disturbances hypothesis, one can 
obtain a linear form of the model; so, assuming that 
each X parameter can be expressed as 
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(where is the steady state regime’s X-value and 0X
X -deviation or static error) and, neglecting the 

terms which contains 2, rX r , one obtains a new 

form of the equation system (1)…(14), particularly in 
the neighborhood of a steady state operating regime, 
as follows: 
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The above system’s used annotations are: 
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Substituting the expressions for in

the equations (15), (19), (20), (22)…(25) and 
applying the Laplace transformer (s being the image 
of the derivation operator), one obtains the linear 
form of the mathematical model, as follows: 
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Using, also, the generic annotation
0X

X
X , the 

above mathematical model can be transformed in a 
non-dimensional one: 
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Based on this mathematical model, one has built the 
block diagram in fig. 2, where the annotations are 
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Figure 2: Controller’s block diagram with transfer functions 
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2.3 Simplified mathematical model

Based on some practical observation, one can make 
some supplementary hypothesis that could be further 
involved in the mathematical model simplifying. 
Thus, the hydraulic fluid is a non-compressible one, 
so 0 ; the inertial effects are very small, as well as 

the viscous friction, so the terms containing m and 

are becoming null. The fluid flow rate  is very 

small, comparative to the actuator’s fluid flow rate 
, so .

3Q

2Q 21 QQ
So, the new, simplified, equations system is: 
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System’s simplified block diagram with transfer 
function is presented in figure 3. 

3. CONTROLLER’S TRANSFER FUNCTION 

Observing the simplified model’s equation’s form, as 
well as the block diagram in figure 3, one can affirm 
that the fuel’s dosage valve’s opening y depends on 
the engine’s speed n, as well as on the slide-valve’s 
spring (6) pre-tension, through the adjustment u.
So, after favorable substituting between the above 
equations, the system becomes a single-equation one, 
which has the form: 
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Based on this single equation, one has built the 
equivalent block diagram in figure 4. 

n
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As far as the adjustments are made before the engine 
becomes fully operational, during the ground tests, 
one can affirm that the opening y depends only on the 
engine’s speed n, so one can define only one transfer 
function for the system, the one with respect to the 
speed, 
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Its characteristic polynomial has 2nd degree, so the 
system is a second order one. 
Its main part, the actuator, can be described as a first 
order subsystem 
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The actuator’s time constant ar and its stability co-

efficient ar  have the forms: 
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Figure 4: Equivalent block diagram 
with transfer functions 

242

Annals of the University of Craiova, Electrical Engineering series, No. 32, 2008; ISSN 1842-4805 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



2

0

0

0
z

y

pb

S

Ar

A
ar , (57) 

2

0

0

0

98

z

y

pbS

kkk

AAr

rAA
ar . (58) 

4. ON CONTROLLER’S STABILITY 

One can perform a stability study, using the Routh-
Hurwitz criteria, which are easier to apply because of 
the characteristic polynomial’s form. So, the stability 
conditions are 
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The second condition leads to a relation between the 
two time constants, zar , , which has the form 
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this inequality represents, in a co-ordinate system 
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This line has a negative slope and intersects the axis 

in A 0,  and B ,0 .
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which represents, as figure 5 shows, a semi-plan 
limited by a line of equation 
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system in figure 5 in C 
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So, one has revealed the maximum value of the 
actuator’s time constant, above which the controller 
becomes unstable. 
According to the specific values of the co-efficient, 
two situations can exist, as figures 5.a and 5.b shows, 
each one representing a specific shape of the stability 
domains. 

If maxar , the stability domain is shown by the 
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Figure 5: Controller’s stability domains 
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Furthermore they are offering, indirectly, some pre-
design information concerning the actuator’s 
geometry and performance, starting from imposed or 
choice time constants and stability constants of the 
involved actuators.    

figure 5.a. Otherwise, if maxar , the stability 

domain is the one in figure 5.b. In this case, the 
stability domain was displaced to the right, the 
intersection between the two lines, (62) and (67), is 
D, which has as significance the minimum value of 
the time constant z , that means the minimum value 
for stability, 
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