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Abstract — Using a synthesis algorithm of a linear state
observer one estimates the state vector for longitudinal
and lateral move of an aircraft (whose wings are or
aren’t affected by elastic deformations). Also one
presents the estimation of a flexible aircraft’s state
vector. Gain matrix of the observer is calculated using
the method of poles’ positioning.
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1. INTRODUCTION

Observers are used for estimation of flying object
state vector using its input and output signals.
Measuring some of the state vector’s components
(output vector’s components) one reduces sensors’
number especially the number of sensors for reach
less or difficult measurable state variables (e.g.
elastic deformations) [1], [2], [3].

First observer structures have been developed by
Luenbergher in 1966, 1971, 1979. The observers are
used both for systems with known inputs and
unknown inputs systems; their project belongs to
different researchers (Bhatta-Charyya, 1978; Chen
and Patton, 1999; Darouach, 1994; Hostetter and
Meditch, 1973; Hou and Miiller, 1992; Hui and Zak,
1993 and 2005; Kudva, 1980; Kurek, 1983; Wang,
1975; Yang and Wilde, 1988; Krzminski and
Kakzorek, 2005 and so on).

Recent observers are obtained for systems with some
unknown inputs or for systems with subsystems
whose dynamic is unknown. For such systems one
may use reduced order observers. Unknown inputs
may be disturbances, errors and so on.

The estimator (filter) Kalman — Bucy [4], [5], [6] is
the best observer for stochastic systems’ state
estimation. In case of nonlinear systems with partial
known inputs or with unknown subsystems adaptive
observers have been made; these observers use neural
networks [7], [8], [9], [10], [11].

Recent researches deal with project of observers for
the intern delay systems [12], [13], [14], based on
Liapunov theory; observers’ project means matrices
inequalities solve. Linear state observers are used for
x state estimation for linear system using measured

variables vector y, the input vector or some

components of this vector.

2. STRUCTURE OF THE LINEAR STATE
OBSERVER

Flying object’s dynamic is described by state
equations
x=Ax+ Bu,
(1)
y==Cx,

where x is the state vector, u — the input vector,
y— the output vector, A4,B,C— matrices; let’s

consider x, — the vector of stationary state variables’

values. The second equation (1) is the equation of the
measurement system. One projects an optimal
observer which gives an estimated state vector
X — x. Linear state observer is modeled by equation

[1]
);c:Afc+Bu+L(y—j/), (2)
where y has the form from the second equation (1)

and y is the estimated output vector,
y=Cx. 3)

Taking into account equations (1) and (3), equation
(2) becomes

%=(A4-LC)% +Bu+LCx (4)
and, with Bu from state equation (1) and error
e =Xx—Xx, one obtains

é=Ade,A=A-LC. 5)
Matrix L of the observer may be calculated so that

A — stabile matrix.
With notation z=3p-y and taking into account

equations (1) and (3) one results
z=Ce. (6)

If 4 is a Hurwitz matrix, for every matrix Q. >0

and O, =Q/, there is a matrix P >0 which verifies
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Liapunov equation

A"P+PA+Q. =0. (7)

Matrix P from Liapunov function
V(t)=e' ()Pe(t) ®
assures achievement of condition V(f)>0 and

Liapunov equation (7) assures the achievement of the
(P <o).
function (8) and having in mind (5) and (7) one
results

stability condition By derivation of

V(t)=e"Pé+é" Pe=e" PAde+ (Ze)r Pe =

9
:eT(PZ—i- ZTP)e:—eTQLe<0. ®

In figure 1 the block diagram of the optimal
command system for the aircraft’s move is presented.
It consist of the following sub-systems: dynamic
model of the flying object, measurement system,
linear state observer and optimal command sub-
system (gain matrix K ). In this figure w=v=0.

3. NUMERIC EXAMPLES

Let’s consider the case of the longitudinal move of A.
The equation which describes A’s move is

AV | [-0.007 0012 -981 0 TJAV, 0

Ad | _|-0128 -0.54 0 1 Ao N —0.046 (10)
AB 0 0 0 1 AB 0o |
A®, 0.065  0.96 0 -099]An, | |-125

and the measurement system is defined by y=Cx,
0 0 1 O
0 -1 10
are o and ©; hence y= [6 9],9: 0—-o (the
trajectory’s slope). Matrix L is calculated using the

method of poles’ positioning (one imposed the eigen
values of matrix 4 =(4-LC) of the closed loop

with C :{ }; the measured state variables

observer). The observer’s poles are chosen such that
their minimum real part is 5+10 times smaller than
maximum real part of the control system’s poles
(longitudinal dynamic of the aircraft)

Refh,,, |

>5+10Refh,,, |

.an

One imposed the following values of the matrix
A:-60.15,-2.84,-18.90,-15.11; it results matrix

1.45 0.92
=10 . (12
-0.26 -0.40

observer sistem

0.06
-0.04

0.07
-0.02

Before calculus of L, the program presented in
Appendix verifies if pair (4,C) is observable and pair
(4,B) is controllable using instructions OBSV and

CTRB; one obtained two matrices with rank 4;
because the A is a quadratic matrix with 4 lines and
4 columns, one results that the model of the
longitudinal move is controllable and observable.

B
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Figure 2: Matlab/Simulink model for the block
diagram from figure 1

Matlab/Simulink model for the block diagram from
figure 1 is the one from fig.2. Using this model, one
calculates estimation errors for the state variables
using observer described by equation (4) without
command law (K =0); these errors are presented in

fig.3. With the estimated state vector one achieves

Figure 1: Block diagram of the optimal command system for the aircraft’s move with state observer
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the command of the longitudinal move (u=-Kx,
with K obtained using algorithm ALGLX [15])

K=[2225 -0316 -10.736 -1.428]  (13)

The four components of the error vector € = X = ¥
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Figure 3: Estimation errors of the state variables (x =0)
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Figure 4: State variables x, () and %,(¢) for u=-Kz

Using again Matlab/Simulink model from fig.2 one
represents the time characteristic from fig. 4; these
express state variables x, (f)— with blues continuous

line and x,(f)— with red dashed line; it is obvious
that X,(#) > x,(t) > 0 in a short period of time.

For the longitudinal move of a deformable aircraft,
with state vector
¥ =[AV Ao, R R, Ay Ry AR A A Ak A R, 8,8, 8,8,

and u=9, , with command matrices 4,B and
matrix C of the measurement system [1]

-0,680-328 -0,04 -0,01 -0,02 -0,02 -0,02 005 -0.64 -0.65 -1.71 45 -1.36 185 -23 -190 -30,1
-0,55 -1,17 0,04 -0,04 -033 -032 -0,12 025 -0,11 -1,68 -10,3 -57 -494 9,11 -576 -2500-440
2149 0,11 -099 -0,02 -0,15 051 002 -026 -299 -409 -166 -40,6 -584 -6,69 3400 1420 260
0,05 -0,09 0,01 -047 -0,07 -0,06 -0,01 0 027 -124 -087 -1,58 -0,16 1,51 -133 -292 -63,9
0,05 -0.85 0,05 -0,07 -129 -041 -003 -0,06 14 -0,65-193 -154 -098 -3,15 -1420-2570-582
-1L1T -099 0,08 -0,04 -027 -1,09 -0,18 044 -02 -0,68 -937-243 -7.18 17 804 -2530-625
<02 -024 006 -0,02 -005 -0,11 -0.86 0,12 023 -075 -1,3 -323-306 6,08 -13,1-653 -179
046 042 -0,11 002 004 018 01 -1,I5 -0,12 201 15 45 477 -352  -411 1120 323

A=| 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0
0 0 0 1 0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -75 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 -7.5

B'=[000000000000000750,

L [10000000000000000
101000000000000000f

choosing eigen values of matrix 4 conform equation
(11)
-6.11+1.214, -6.11-1.21i, - 0.16,-0.025 + 0.054i,
-0.025-0.054i,- 0.028 + 0.1861,- 0.028 - 0.1861,- 0.021+ 0.17i,
-0.021-0.17i,-0.01+0.11,- 0.01-0.11,- 0.02 + 0.15i,
-0.02-0.15i,-0.02 +0.13i, - 0.02, -0.13i,-0.3,- 0.37,

one obtains characteristics x,(r) and x,(¢) (blue color
respectively red color) for u =0 (fig. 5) and errors
e,(t)=x,(t)—x,(t) (fig. 6) for matrix K calculated
with the same algorithm ALGLX [15].

Figure 5: State variables x,(¢) and x,(¢) for the longitudinal move of an elastic deformable aircraft (u = 0)
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Figure 6: Estimation errors e, (¢) = x,(¢) - x,(¢) for u=-Kx (longitudinal move)

Let’s consider now the case of lateral move of an
aircraft described by equation

Ap] [-0.0558 -0.9968 0.0802 0.0415][ Ap] [0.0073 0 (14)
Ad, | | 0598 0115 —00318 0 ||Aw. | |-0475 0.123|[3,

Ao, || 0305 0388 0465 0 |lAe,|'| 0153 1.063 [a‘, }

Ap 0 0.0805 1 0 || 2 0 0

with c=[0 0 0 1],choosing eigen values of matrix
A conform to (11), -66.27,-3.97,-10.36,-1.58, one

obtained matrix

L'=10*-[1.21 —0.05 0.11 0.008]  (15)

The four components of the error vector 2= X — X
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Figure 7: Estimation errors of the state variables
(u=0) for the lateral move of the aircraft

4. APPENDIX

% Longitudinal move n=4

clear all; run prog2sec; close all;
clear A; clear B; clear C; clear D;
clear e; clear ee; clear R; clear rl;
clear contor;

Using the same Matlab/Simulink model from figure
2, one represents time characteristics from figure 7
(estimation errors of the observer’s state variables for
K =0) and time characteristics from figure 8 (x,(¢) —

with blues continuous line and X (f)- with red
dashed line);

-7.63 -1994 -137 7.93 (16)
-8.55 13.79 460 5 |

) i)
Figure 8: State variables x,(¢) and %,(¢) of the

lateral move’s optimal command system

% Matrices of the system

A=[-0.007 0.012 -9.81 0;-0.128 -0.54 0 1;
000 1;0.065 0.96 0 -0.99];

B=[0;-0.04;0;-12.5];

C=[0010;0-110];

n=size(A,1);

m=size(B,2);

s=size(C,1);
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D=zeros(s,m);
sys=ss(A,B,C,D);
% Initial state (x0)
x0=[100;1;0;107;
% Initail state of the observer (xc0)
xc0=zeros(n,1);
% Eigen values of the closed loop system (A-B*K)
p=eig(A-B*K);
% Eigen values of the observer (q)
for j=1:length(p)
R(j)=real(p(j));
1(j)=imag(p());
RR=R*5; I1=I;
ee(j)=RRG)HIG)*i;
q=ce';
end
% Controllability and observability calculus matrices
OB=o0bsv (A, C);
CO=ctrb (A, B);
rl=rank(OB);
r2=rank(CO);
L=place(A',C',q);
% Determination of matrix L using poles’ positioning
method
L=L";
% Observer matrices’ calculus
Aobs=A-L*C;
Bobs=[B L];
Cobs=C;
Dobs=zeros(n,stm);
KK=K;
% Matlab model simulation (K=0)
K=zeros(m,n);
sim('schobs2");
subplot(221);
plot(t,x1-xc1,'r");grid,;
subplot(222);
plot(t,x2-xc2,'r");grid,;
subplot(223);
plot(t,x3-xc3,'r");grid,;
subplot(224);
plot(t,x4-xc4,'r");grid;
% Block diagram simulation with controller (K=K)
K=KK;
sim('schobs2");
h=figure;
subplot(221);
plot(t,x1,'b",t,xc1,'r--");grid;
subplot(222);
plot(t,x2,'b",t,xc2,'r--");grid;
subplot(223);
plot(t,x3,'b",t,xc3,'r--"); grid;
subplot(224);
plot(t,x4,'b'",t,xc4,'r--");grid;

5. CONCLUSIONS

The paper presents the structure of a linear state
observer and this structure is then used for estimation
of the state vector for longitudinal and lateral move
of an aircraft (using a Matlab algorithm made by the
author). Gain matrix of the observer is calculated
using the method of poles’ positioning. The
observer’s poles are chosen such that their minimum
real part is 5+10 times smaller than maximum real
part of the control system’s poles (longitudinal
dynamic of the aircraft). One calculates estimation
errors for the state variables using observer without
command law (K =0) or with it (u=-K&% with K

obtained using algorithm ALGLX).
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