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Abstract − A fuzzy logic controller (FLC) provides a 
means of converting a linguistic control strategy based 
on expert knowledge into an automatic control strategy. 
A short survey of the FLC rule-base design strategies is 
presented, focusing on a control engineering knowledge 
based methodology. A fuzzy controller is designed for a 
temperature control application to test the proposed 
approach. System performances and method’s viability 
are analysed. 
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1. INTRODUCTION 

Although a large number of algorithms have been 
proposed so far, it is still hard to say there are some 
general, all accepted methods for designing fuzzy 
controllers and for finding their optimal parameters. 
Anyway, based on experience and the huge amount of 
literature available, a set of suggestions can set bounds 
to an initial, somehow standard approach [1] that will 
result in obtaining a controller by knowing few details 
about the process. Such methodology should be able to 
build at least a rough controller, which will be 
subsequently improved to satisfy higher performances 
(if required). 
As often mentioned in literature, there are at least four 
main sources for finding and/or fine tuning control 
rules of either an initial controller or an improved one: 
• Based on expert experience and control engineering 

knowledge [2],[3]. 
• Based on the operator’s control actions and 

designer’s knowledge [2],[3]. 
• Based on a fuzzy model of the plant (if available) or 

fuzzy identification [4]. 
• Based on learning, neural networks or genetic 

algorithms [3], [5]. 
There are a lot of practical strategies, from the simplest 
“try-and-see” to high complexity algorithms. 
However, when it comes to practical implementation, 
the main advantages of fuzzy control should be 
considered, along with performances, even during 

design stage. Hence, design must be guided by the 
often mentioned reasons for using fuzzy logic 
controllers: 
• Fuzzy logic controllers are an efficient method to 

control ill-defined processes, since no explicit or 
accurate mathematical models of the process are 
needed to design the controller [2], [5]. 

• Fuzzy controllers are more robust than PID 
controllers because they can cover a much wider 
range of operating conditions, and it can operate with 
disturbances of different natures [1], [6]. 

• Control strategy consists of if-then rules, built from 
a usual vocabulary containing everyday words, 
which make it easy to read. Plant operators can 
embed their experience directly and controllers are 
easily customisable [6].  

• Fuzzy logic enables non-specialists to design control 
systems, since it focus on linguistic knowledge rather 
than complex mathematical equations. It is easy to 
learn how fuzzy controllers work and how to design 
them to a concrete application [6]. 

• Developing fuzzy controllers is cheaper than 
developing model-based or other controllers to do 
the same thing. 

2. A KNOWLEDGE-BASED FUZZY 
CONTROLLER DESIGN 

When based on expert knowledge, fuzzy controller 
design problem has at least four steps: a) choose 
control system structure and controller type (P, PI, PD, 
PID), which determines the input and output variables; 
b) set universes and fuzzy sets for each fuzzy variable; 
c) set the control rules; d) set the scaling gains for 
measured crisp variables. We will shortly describe 
these steps. 
The classical control system is having the controller 
located before the process and computes the control 
actions from the error values by applying an algorithm. 
Most fuzzy control applications consider as inputs of 
the fuzzy inference system both the error and the 
derivative error (also named change-in-error). The 
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reason is that not only the error value is important in 
taking a control action, but also the way that value 
changes. The output of the fuzzy controller is either 
the control action or its derivative value (change-in-
command). 
Control applications of fuzzy logic accommodates 
better with Sugeno-Tagaki inference system (than 
Mamdani). The main reason is that the defuzzyfication 
is easier and faster. 
Several available commercial controllers use standard 
universes for input and/or output variables [1]. There 
are mainly two types of standard universes: a) the 
symmetrical range ];[ LL +−  and b) the asymmetrical 
range ];0[ L+ . Using one or the other depends on the 
actual application, but for control systems the first type 
is more appropriate, since error variable can be 
negative. The values of this range limits depend first 
on implementation of the fuzzy controller. 
For every input variable a family of attributes 
(linguistic terms) are defined. The choice of shape and 
width of all fuzzy sets is subjective; however there are 
a few rules [1], [2]: 
- A term set should be sufficiently wide to allow for 
noise in the measurement; 
- A certain overlap is desirable to avoid poorly defined 
states.  
- A gap between two neighbouring sets must be 
avoided, because in the gap no control action is 
defined. 
Usually, an odd number of attributes are chosen for 
input variables. The linguistic terms are simple fuzzy 
sets, with triangular or trapezoidal membership 
function, for an easy implementation on numerical 
devices. 
In control applications, the most relevant linguistic 
term is the one of error variable that is representing 
zero. It strongly affects the steady-state performance. 
Simulations prove that for max,ste , maximum accepted 
steady-state error, the zero attribute must be defined 
within [ max,ste− ; max,ste+ ]. 
Linguistic terms of output variable are chosen 
uniformly distributed over the variable’s universe and 
they are singletons. It is also important to have 
singletons at the limits of output variable’s universe. 
For setting a rule-base, let’s first analyse a system 
known to have optimal transient response. Control 
theory presents the classical problem of a first order 
element with the pK  gain and the pT  time constant, 
for which optimal performance is obtained using an 
integrator as controller. The closed-loop system is a 
second-order system, with the step response similar to 
that shown in Fig. 1. The figure also shows the error 
signal.  
By examining the error, we can express a relation 
between it and the control output that forces the 
system’s output to follow the reference. Hence, we can 

say: 
if error is positive_big then command is positive_big  
or maybe more suggestive  
… command should be positive_big 
The same reasoning will produce more rules, e.g.: 
if error is positive_small then command is 
positive_small  
The rule base is subsequently refined by considering 
the derivative error, e.g.: 
if error is positive_small and derivative error is 
negative then command is positive_small  
Techniques to tune the scaling gains, offline or online 
(real time) have received the highest priority in 
literature due to the influence of the gains on the 
performance and stability of the system. First, the 
measured variables must be scaled to/from the chosen 
universe of discourse (for input and output variables). 
Second, there are many methods for further fine tuning 
of scaling gains.  

 

Figure 1: An optimal control system 

Let’s assume that for all variables we set a ];[ LL +−  
range. For error variable, the maximum possible value 
is measured at step time (see Fig. 1), and that value is 

 timestepttytre
=

−= )()(max  (1) 

That value corresponds to the positive limit of error’s 
universe, eL+ . So we can set the scaling factor for 
error variable: 

 
maxe
LK e

e =  (2) 

and for derivative error: 
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L

de
LK dede
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The maximum change-in-error is no larger than the 
maximum error: maxmax ede ≤ . 
As considered above, maxe  depends on reference 
signal. Changing the reference will cause an 
undesirable eK  value. A more general and still easy 
method would be: 
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which means that the gains are adjusted online by 
considering at any time the actual reference value as 
the maximum possible value of error. Hence, the 
scaling gains are not constants, but time-variant 
functions. The advantage is that changing reference’s 
type or parameters would not lead to change the 
controller’s input gains (and so avoid controller’s 
redesign). 
Another gains tuning approach consists in designing a 
classic PID controller, then to replace it with a fuzzy 
PID controller. 
The scaling gain for controller’s output is a gain factor 
“before” the process, so it acts like the proportional 
action of a PID controller. 
Inspired by Ziegler-Nichols formula for the gain of a 
classical PID, we can calculate the scaling gain for 
output: 

 
τ

p

p
u

T
K

K 1
= , (4) 

where: pK  is the plant’s gain, pT  is the main time 
constant, τ  is the dead-time. 
It is worth mentioning here that the output gain will 
compensate plant’s gain, time constant and dead-time, 
which is the reason for using this equation. Also, we 
have to mention that, usually τ/pT  is large enough to 
assure that for the limit of output variable’s universe, 

uL , the value of control action is the maximum 
technically possible value, maxu . 
The above presented strategy leads to the fuzzy 
control system depicted in Fig. 2. 

 

Figure 2: Proposed knowledge-based fuzzy control 
system 

3. EXPERIMENT DESCRIPTION 

The process subjected to fuzzy control in our 
experiment is a thermal process, shown in Fig. 3. The 
plant contains a 24[V] halogen lamp (1) that heats a 
small radiator (2) and a fan (3) feeding a uniform air 
jet that cools the radiator. A sensor (4) is used to 
measure the temperature and to set a corresponding 
voltage signal, with the ratio 1[V] = 10[ºC]: 

1.0=ratioK .  

 

Figure 3. Process description 

Air jet flows over the radiator through a notch (5) that 
can be blocked by an adjustable flap (6). Temperature 
is raised by applying a voltage on a halogen lamp and 
lowered by applying a voltage on the fan. The voltages 
are generated by two power amplifiers that work 
separately and exclusively, based on command signals 
from the controller. 
The designed control system contains a data 
acquisition module (Profi-Cassy) and the 
Boris/WinFact software  
The Profi-Cassy module has two inputs, to measure 

]10;10[ +− [V] signals, and two outputs, to generate 
]10;10[ +− [V] signals. Inputs and outputs work 

simultaneously and independent. Boris/WinFact is a 
simulation and real-time control environment that can 
be used for simulating control systems or for running 
as a digital controller, with Profi-Cassy as analogic-
numerical interface. 
The fuzzy inference system is Sugeno-Takagi type, 
having two inputs, error and derivative error, and one 
output, control action. The universe of each variable is 
the interval ]1;1[ +− : 

1=== udee LLL  
The variables’ universes and linguistic terms are 
presented in table 1. 

Table 1 

Error: ]1;1[ +−  
NegBig trapmf(-1, -1, -0.1, -0.01) 
NegSmall trimf(-0.1, -0.01, 0) 
Zero trimf(-0.01, 0, 0.01) 
PosSmall trimf(0, 0.01, 0.1) 
PosBig trapmf(0.01, 0.1, 1, 1) 

Derivative error: ]1;1[ +−  
Neg trimf(-1, -1, 0) 
Zero trimf(-1, 0, 1) 
Big trimf(0, 1, 1) 

Control output: ]1;1[ +−  
NegBig -1 
NegSmall -0.5 
Zero 0 
PosSmall 0.5 
PosBig 1 
trapmf = trapezoidal membership function 

trimf = triangular membership function 
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Figure 4: Recorded temperature: (a) transient response when changing reference from 20 ºC to 40 ºC; 
(b) detail of steady-state conditions 

 
The rule-base is obtained by examining the second-
order system known to have optimal transient 
response, and without considering the plants model 
(table 2). 

Table 2 

Derivative error Error 
Neg Zero Big 

NegBig -1 -1 -1 
NegSmall -1 -0.5 -0.5 

Zero -0.5 0 0.5 
PosSmall 0.5 0.5 1 
PosBig 1 1 1 

4. RESULTS 

In Boris control scheme, we set the reference 
temperature value to C][40)( * °== θtr . 
Previously, we recorded step response of the open-
loop system to in order measure process gain, dead-
time, and time constant. The values are:  

2.1=pK , sec120=pT , sec10=τ , 
and the calculated scaling gains are: 
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With these scaling gains applied to the proposed fuzzy 
controller, the obtained performances for the control 
system are: 
- in steady-state conditions, temperature slowly 
oscillates around 39.8 [ºC], which means that 

%)1[%](%5.0 =<≈ est Le ; 
- for transient response, overshoot is close to an 
optimal value: %25.6≈σ ; 
- settling time is [sec]35≈st , satisfactory for a 
process with large time constant. 
Figure 4 shows the measured output temperature of the 
process. 

5. CONCLUSIONS 

A control engineering knowledge based strategy for 
fuzzy controllers design is successfully used in a 
considerable number of control applications. The 
methodology follows some general guidelines 
mentioned in today available literature. Knowledge 
can reveal a set of if-then rules to describe the 
controller’s correct actions for achieving 
performances. Furthermore, this approach follows the 
main reasons of fuzzy logic control, among which we 
mention: process modelling is not necessary and little 
experience is needed for a satisfactory control system. 
The knowledge based controller was tested with 
success on a temperature control system. The 
temperature control is one of the most suitable 
applications of fuzzy control, since thermal processes 
have complex or ill-defined models, and are often 
affected by disturbances. 
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